
Hardware-in-the-loop Environment for Control Systems evaluation 
under Linux/RTAI 

 
LUIS GARCIA, MANUEL J. LOPEZ, JOSE LORENZO 

Dpto. Ingeniería de Sistemas y Automática 
Universidad de Cádiz 

SPAIN 
  

 
 

Abstract: - In this paper we propose a general purpose hardware/software environment for hard real time 
simulation of dynamical systems in the context of control engineering. With this system, realistic analysis and 
tests can be carried out for controller algorithms characterized by time determinism with strict restrictions, 
multiple inputs and multiple outputs and based on robust control theory. A hard real time system for plants 
simulation, controller implementation and testing (EPESC) has been developed, which is   based on Real Time 
Linux (Linux-RTAI) and COMEDI project. The complete system provides a flexible and scalable environment 
for controller design, implementation and evaluation with hard real time restrictions. EPESC system has been 
developed by open-source software. The increasing prominence of open-source software is an important trend 
that has many positive benefits for scientific community.  
 
 
Key-Words:  Controller design, real time control, hardware-in-the-loop simulation. 
 

1 Introduction 
One of the main tools for testing and analysis of 
control systems is simulation, and if it must be carry 
out in a realistic environment for hardware and 
software testing before to develop prototypes, 
hardware/software-in-the-loop approaches are very 
useful and can support simulation results. Frequently 
there has been a gap between the control engineers 
who design the components of the control system and 
the software engineers who implement them. So that 
a thorough understanding of the methodologies used 
in both disciplines would make the overall process 
more cohesive. Component-based design of control 
systems has several advantages over the current 
practice of design, especially for stream-lining the 
transition from simulation to real implementation. 
Setting and abiding by standards for the interfaces 
between the components facilities rapid prototyping 
from simulation stage to the implementation stage. 

The basic idea is: Ideally, controllers, signal 
processing/filtering components would not know if 
the information it is getting comes from the 
simulation code or from the sensor itself. Software 
components may be objects such as Java application 
or C/C++ program. Properties such as encapsulation, 
inheritance and polymorphism are useful for 
implementing components [1], [2], [17], [20]. Based 
in this approach, we have developed a new 
hardware/software environment for designing and 

testing control systems. Controllers are designed 
based on PID, H2 and H∞ methods, using an 
innovative procedure for controller auto-tuning based 
on experimental data and/or on theoretical 
mathematical models [10]. Model identification and 
controller design are carried out by means of a new 
software application for Windows family operating 
system: ControlAvH. This software makes 
transparent for the user the mathematical complexity 
associated with controller design, and additionally 
provides a friendly user interface which facilities 
monitoring, analysis and controller validation tasks. 

 In order to test control systems in realistic 
environments and to evaluate hardware/software in 
the loop performance, a hard real time system based 
on Real Time Linux under PC platform and on data 
acquisition cards has been developed: EPESC system. 
ControlAvH makes controllers tuning and by means 
of EPESC the controller is implemented and tested; 
for which ControlAvH-EPESC system provides a 
flexible and scalable environment for controller 
design, implementation and evaluation with hard real 
time tests. The complete system, EDECOS 
(Environment for Design and Evaluation of Control 
Systems), is used for testing and evaluating controller 
design by hard real time simulation.  

The rest of paper is organized in sections as 
follows: In section two EDECOS is introduced, 
TuHiCo Toolbox is referenced, ControlAvH Tune 
application and EPESC system are described; in 
section three are analyzed the real time control 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       285



system and simulation prerequisites, and in section 
four EPESC system requirements, basis architecture 
and functionality are defined, and finally, conclusions 
are summarized in section five. 

2 EDECOS system 
In our group GAPSIS, we have developed an 
Environment for Design and Evaluation of Control 
Systems (EDECOS), which consists of several 
components such as it is shown in Fig.1. The main 
parts of the EDECOS system are: 1) TuHiCo 
Toolbox, 2) ControlAvH application and 3) EPESC 
system. 1) TuHiCo Toolbox, based on Matlab, is used 
as previous phase to ControlAvH and its main 
functions are to develop efficient algorithms and 
methods for system identification, controller design 
and performance analysis. 2) ControlAvH application 
implements reliable methods and algorithms 
previously tested in TuHiCo Toolbox, and its main 
functions are data acquisition, system identification, 
controller computation, and user interface. 3) EPESC 
system provides hard real time plant simulation and 
hardware-in-the-loop environment for testing and 
evaluation of the designed controllers. 

2.1 ControlAvH Tune Application 
ControlAvH Tune has been developed with Builder 
C++ [3], which is a last generation RAD (Rapid 
Application Development) toll that incorporates a 
great quantity of standards with a very fast and 
efficient compiler. The base language is C++ which 
permits rapidity, flexibility and portability of the 
developed software. Builder C++ permits us to design 
the different interfaces that the user has to execute. In 
the main screen of the application the following 
elements are considered: 1) Graphical screen for 
signals evolution, 2) start and stop buttons of the 
control system, 3) on-line information of the run 
times of different tasks, 4) set of buttons to user the 
graphic system, 5) controller parameters for PID, H2 
and H∞ and sample time. 

By means of ControlAvH software application 
controller design and analysis are made. In order to 
carry out the application design we have used 
methods based on real time system techniques [1], 
[17], [20] and on automatic control theory applied to 
robust controller design [7], [9], [18]; with the 
objective to implement different phases related with 
controller design and validation. 

   Each application component can be represented 
with classes, objects and tasks within of the 
application. By means of object oriented 
programming (OOP) high flexibility is obtained, 
which permits an easy joint among different 

components. Besides, those facilities to develop 
structured software can provide the division of 
complex algorithms in smaller modules of easy 
resolution. Each one of components can be 
assembled within a generic part that can be 
implemented by an object oriented framework [1], 
[17], [20]. 

 
Fig.1: EDECOS components and connectivity. 

 
 

   As it can be seen in Fig.1, the application has an 
operation mode (MODE 1) which works in soft real 
time controlling directly the process by means of data 
acquisition cards. Nevertheless, in MODE 2 
ControlAvH works only as that in this case the 
controller (hard real time) is implemented in EPESC. 
Connection between ControlAvH Tune and EPESC 
is made by Ethernet. In MODE 1, ControlAvH works 
as autonomous system and it incorporates functions 
for controller design, analysis and controller 
implementation: which supposes an element of 
additional complexity.  

Data acquisition and control algorithms execution 
for industrial processes require strict time restrictions 
and reliability, due to what the following 
functionality characteristics must be incorporated: 1) 
Coordination among real-time tasks, 2) processing of 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       286



interruptions and messages within the system, 3) 
input/output device drivers to insure that they do not 
lose data, 4) inlet and outlet time restriction 
specifications of the system, 5) databases precision. 
To develop this software application with such 
restrictions, it is very important to take into account 
software engineering principles to avoid possible 
bottlenecks and to be able to get the optimal 
performance from hardware and software. 
ControlAvH has been developed under Windows XP, 
so that only soft real time is guaranteed. 

Data from real time signals that the control 
application must register are the following: Time, 
process variable (PV), controller output (CO) and set 
point (SP), since error signal is obtained 
from PVSPE −= . These data are used by algorithms 
related with system identification methods, controller 
design and implementation, control system analysis, 
system simulation, as well as system temporary 
evolution visualization interface. 

Commercial software tools for control systems, 
such as VisSim from Visual Solutions [21] or 
Matlab/Simulink from The MathWorks [13], are 
aimed at design and analysis. Matlab is used in 
conjunction with the Simulink package to provide a 
block-diagram-based graphical user interface along 
with some expanded simulation capabilities. To ease 
system implementation, the Real-Time Workshop 
Toolbox can be used to generate C code 
automatically from Simulink block diagram. VisSim 
works in similar way. Both products tend to generate 
monolithic code rather than component-base code. 
Matlab/Simulink has been mainly used for 
developing and implementing TuHiCo Toolbox 
(Tuning of H-infinity and H-2 Controller Toolbox) 
and GARCO (Genetic Algorithms for Robust 
Controller Design) Toolbox (see Fig.1). TuHiCo 
Toolbox is used previously to ControlAvH, and its 
function is to get reliable algorithms and methods; 
which, once have been tested and evaluated, are 
implemented in ControlAvH.  

2.2 EPESC System overview 
EPESC: Hard Real Time Control and Simulation 
system has been developed for PC-based controllers 
and PC-based plant simulators; due to PC-based 
environments are cheaper then industrial-grade 
processors and have a more open architecture. This 
open architecture means that third-party vendor is 
able to supply more of the components. 
Communication between PCs is based on the 
Ethernet hardware, as it is outlined in Fig.1. Low-cost 
communication suggested the user of TCP/IP or 
UDP/IP, which are nonproprietary communication 
protocols. The TCP/IP protocols guarantees, via 

implicit acknowledgment, receipt of data packets, but 
occupies a wider network bandwidth. The UDP/IP 
protocol is faster, but does not guarantee absence of 
packet losses. Basically, the communication between 
PC1 and PC2 consists of controller matrices, tuning 
parameters and data for controller analysis and fine 
tuning. For that, we have adopted the TCP/IP 
protocol. 

The essence of real-time systems is that they are 
able to respond to external stimuli within a certain 
predictable period of time. Building real time 
computing systems is challenging due to 
requirements for reliability and efficient, as well as 
for predictability in the interaction among 
components. Real-time operating systems (RTOS) 
such as VxWorks [22], QNX [15] and LynxOS [8] 
facilitate real-time behavior by scheduling processes 
to meet the timing constraints imposed by the 
application. Control systems are among the most 
demanding of real-time applications. There are 
constraints on the allowable time delays in the 
feedback loop (due to latency and jitter in 
computation and in communication), as well as the 
speed of response to an external input such as 
changing environmental conditions or detected 
faulted conditions. If the timing constraints are not 
met, the system may become unstable. 

EPESC system consists of hardware (input/output 
interface and electronic card for data acquisition) and 
a software application developed with C/C++ 
language, Linux Operating System and RTAI (Real 
Time Application Interface for Linux), [12], [16], 
[19]. RTAI lets to develop applications with strict 
timing constraints, but has the difference with respect 
to other real time operating systems (QNX, 
VxWorks, and LynxOS) that, like Linux itself, this 
software is a community effort and freeware. RTAI 
supports several architectures, such as X86/Pentium 
or PowerPC [16]. Such as it is shown in Fig.1, 
EPESC is used for hard real time controller 
implementation and for process simulator, both 
implemented with PC. 

 

3 Real-Time Control and 
Simulation 

3.1 Requirements 
The real-time control and dynamic simulation 
software should: 
• Satisfy the constraints of periodic real-time 

execution; 
• Be able to interface itself with external processes, 

possibly with hardware; 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       287



• Be easily derived from models developed for off-
line simulation. 

• Additionally, must use the maximum open-source 
software packages. 

3.2 Real-time execution platform 
The purpose of obtaining a real-time application 
imposes the choice of an operating system capable of 
supporting the execution of real-time processes, [4], 
[17]. 

The Linux operating system extended with the 
Real Time Application Interface (RTAI) [12], [16] 
has been chosen. This operating System supports the 
execution of real-time processes, it is open-source, 
and it is widely used among the scientific community 
and in the European research centers. 

3.3 Interoperability issues 
Many custom libraries are available for Linux/RTAI. 
For the purposes of this project, the COMEDI 
(Control and Measurements Device Interface) [5] 
library, developed by the open-source community, is 
particularly interesting. By means of a set of standard 
interfaces, COMEDI allows managing the 
communication with hardware boards, and so 
provides a valid support for the data exchange on 
hardware channels. These drivers allow the access to 
data acquisition boards for analog and digital signals. 

3.4 The software control application 
A real-time software control system has been 
developed which emulates several functionalities of 
industrial controllers [6], [11]. This control 
application can be easily adapted to interact with 
simulations of industrial plant. Thanks to the 
adoption of COMEDI drivers, the control system can 
control without distinction a physical system, or a 
model based simulation of the system itself, provided 
that the two systems have the same number of input 
and output channels, disposed in the same order, [5], 
[17]. 

The software control system can be coupled with 
the real-time simulator, and each one of these two 
applications can be used as test bench when adding 
new features to the other one. So, the software control 
system can be used to test new and more refined 
industrial plant models, and to analyze their behavior, 
if compared to the behavior of the corresponding real 
plant, while the real-time simulator can be used to 
test some innovating control solutions, without taking 
the risk of damaging the plant hardware. 

The Linux/RTAI operating system has been 
chosen for the control application too, for the same 
reasons explained in section 3.2. The controller 

application can execute a standard control cycle, with 
signals exchanged in Real-Time with the controlled 
system.  

3.5 The closed-loop data acquisition 
Both the control and the simulation applications 

should be able to transmit and to acquire signals on a 
hardware communication channel. In order to make 
any application unaware of the presence of hardware 
or software on the other side of the control loop it has 
been decided to implement COMEDI drivers for 
communications boards. The COMEDI package has 
been chosen because it is an open-source product 
widely used in the field of automation. Indeed 
COMEDI provides a standard for drivers of DAQ 
(Digital Acquisition boards) under Linux, [5].  

A COMEDI driver for two National Instrument 
(NI) PCI-6014 boards has been used. Both boards are 
accessible from real-time processes: The first one is 
used by the controller process, while the second one 
is used by the plant simulator process, [14]. 

4 EPESC system platform 

4.1 Architecture overviews 
In the Fig.  2 EPESC architecture in case of an 
embedded digital controller is shown. The controller 
is embedded on available hardware at laboratory, 
such as: DSP, Field Programmable Logic Array 
(FPLA), card prototype and others. The plant 
simulator contains the following elements: 
Plant simulator: The PC-based platform with 
Linux/RTAI operating system is used. Plant, sensors 
and actuators are simulated using their respective 
non-linear mathematical models, [13], [21]. 
A/D and D/A converters: the data acquisition 
hardware and the COMEDI project are used for 
input/output analog channels.   
 

 
Fig.  2: EPESC – Embedded Digital Controller 

 
In the Fig.  3 the EPESC hardware architecture is 
shown, where a digital controller is implemented on a 

Actuators, sensors and plant simulator

Plant SensorsActuators D/A

Embedded 
Digital 

Controller

A/D

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       288



PC-based system and under Linux/RTAI. The same 
configuration, PC-based, is used for plant simulator. 
 

 
Fig.  3: EPESC - PC based controller 
 

4.2 Modules and functions 
In the Fig.  4 the EPESC software architecture block 
diagram is shown. There are two main components in 
this software architecture: The real time and the non-
real time space components, both spaces are 
communicated by means of real-time first input – 
first output queue memory (FIFO). The Real time 
EPESC software is executed under Linux/RTAI like 
Linux module (in kernel space), the non-Real time 
software is executed under Linux like a process (in 
user space), 

The real-time modules are implemented by means 
of three RT-threads, the so-called MONITOR (see 
Fig.  4) takes care of communication by FIFO with 
the system EDECOS and, concretely, with 
ControlAvH  application. With this approach, the 
simulated plant can be modified if it was necessary; 
and the computed controller algorithm parameters are 
loaded. The state of the EPESC system is modified 
by command mode request and is controlled by RT-
thread MONITOR. The RT-thread CONTROLLER 
or PLANT receive commands and parameters from 
MONITOR by means of global data blocks. 

In order to reach the central idea of the EPESC 
system to evaluate the control systems, taking into 
account the hardware in the loop, input and output 
electrical signals are present, such as: The 
CONTROLLER signals (input process variables, PV, 
controller output, CO), and the PLANT signals 
(Output process variables, PV, manipulate variables, 
MV) are both wired signal interconnecting by means 
of two multi I/O data acquisition cards (see wired 
connections legend in Fig.  4). These cards provide 
the electric input-output signals among them. 

All this system information must be sent to the 
Linux process so-called DISPLAY, which stores 

information on appropriate data structures and puts 
them in shared variables, available to the net services. 
The net services are implemented by two Linux 
thread (EPESC-SVR and EPESC-DL). 

In the EDECOS environment context, the EPESC 
main server (EPESC-SVR) and the EPESC data-
logging server (EPESC-DL) are used for ControlAvH 
Tune application to link with EPESC system; and 
request it services, which is achieved by means of 
command traffic.  

The principal commands of EPESC-SVR 
processes are the following: 
1) INIT: Set the system on the initial states; 

stabilize the plant and controller algorithm, and 
other initial actions. 

2) STOP: Put the system in stop: Freeze the state. 
3) MODE_1: In this mode, EPESC is used by 

ControlAvH like plant simulator (see Fig.  2). 
4) MODE_2: In this mode, EPESC is used for plant 

simulation and digital controller test (RT-thread 
PLANT and CONTROLLER), for which are 
needed the controller parameters and the set-
point. 

5) SET_CONTROLLER: When ControlAvH has 
designed a new controller, via this command, 
send to EPESC new controller parameters in 
floating point double precision format (Sample 
time and values and dimensions of the system 
matrices A, B, C, D, in the space state model). 

6) SETPOINT: When MODE_2 is present, the 
application ControlAvH sends to EPESC 
changes in the set-point. The digital controller 
computes the error signal (SP – PV). 

 

 
Fig.  4: EPESC - Software architecture. 

 

PC-based Digital Controller

Plant 
Simulator 

Digital
Controller D/A A/D 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       289



In the other hand, the principal commands of 
EPESC-DL processes are the following: 
1) REQ_DL1: When ControlAvH requests DL1 

command, via data-logging, information about 
process variables is sent from PLANT to 
ControlAvH via EPESC-DL services. 

2) REQ_DL2: When ControlAvH requests DL2 
command, the controller output variables (CO) 
are provided by the ControlAvH application 
(usually in mode 1) via data-logging. 

 
Eventually, in order to accomplish tests during the 

designing and implementation phases of EPESC 
system, and for making independent evaluations and 
tests over EPESC, we have made a client application 
that emulates EDECOS interface, and mainly, the 
communication with ControlAvH Tune application. 

5 Conclusions 
With EDECOS system we obtain a flexible 
hardware/software environment for hard real time 
plant simulation, controller implementation and 
closed loop control system evaluation.. On-line PID, 
H2 and H∞ controllers design and evaluation tasks are 
realizable by means of ControlAvH Tune software.  

EPESC system has been developed by open-
source software. The increasing prominence of open-
source software is an important trend that has many 
positive benefits for scientific community. Open-
source software is typically more stable and less 
buggy than proprietary software. 

We have given specifications and technical 
solutions for EPESC system; keeping in mind, also, 
simplicity and economy criteria.   
 
References: 
[1] A. Abran and J.W. Moore, executive editors, 

Guide to the Software Engineering Body of 
Knowledge. IEEE Computer Society, 2004. 

[2] B.S. Heck, L.M. Wills and G.J. Vachtsevamos, 
Software Technology for Implementing 
Reusable, Distributed Control System. IEEE 
Control System Magazine, pp. 21-35, February 
2003.  

[3] Builder C++. http://www.borland.com.  
[4] Burns A., A. Wellings, Sistemas de Tiempo Real 

y Lenguajes de Programación, Addison Wesley 
(2003).  

[5] COMEDI –The Linux Control and Measurement 
Device Interface. http://www.comedi.org/   

[6] K.J. Astrom and B. Wittenmark, Adaptive 
Control. Addison-Wesley, 1995.  

[7] K. Zhou, J.C. Doyle and K. Glover, Robust and 
Optimal Control. Prentice Hall, 1996.  

[8] LynxOS RTOS. http://www.lynuxworks.com.  
[9] M.J. Grimble, Robust Industrial Control: 

Optimal Design Approach for Polynomial 
Systems. Prentice Hall, 1994. 

[10] M.J. López, Contributions to Advanced Process 
Control. Methods for H∞ Controller Tuning. 
University of Cádiz, 1999.  

[11] Maciejowski, J.M.,  Multivariable Feedback 
Design, Adison Wesley, (1989).  

[12] Mantegazza, y S. Papacharalambous, “Real time 
application interface”, Linux Journal (2000).  

[13] MathWorks Inc. Matlab, www.mathworks.com.  
[14] National Instruments Corporation. Measurement 

and automation catalog. http://www.ni.com. 
[15] QNX Software Systems. http://www.qnx.com.  
[16] RTAI. http://www.aero.polimi.it/rtai. 
[17] S. Bennet, Real Time Computer Control. 

Prentice-Hall, 1998.  
[18] S. Skogestad, I. Postlethwaite, Multivariable 

Feedback Control. Wiley, 2003.  
[19] SuSE Linux 9.0, Administration and user guide, 

SuSE Linux AG (2003).  
[20] V. Gazi, M.L. Moore, K.M. Passino, W.P. 

Shackleford, F.M. Proctor, J.S. Albus, The RCS 
Handbook. Tools for Real-Time Control Systems 
Software Development. Wiley, 2001.  

[21] Visual Solutions Inc. VisSim (Visual Simulator). 
http://www.vissim.com.  

[22] VxWorks RTOS. http://www.windriver.com.  

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       290


