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Abstract: The performance of chemical processes is often determined by the selectivity and activity 
of catalysts used in them. Optimizing a catalyst accordingly leads to a high-dimensional constraint 
optimization task for both continuous and discrete variables. To solve that task, genetic algorithms are 
most frequently used in catalysis, though their routine use is still hindered by a lack of appropriate 
implementations. Generic implementations of this method do not address all features of the 
optimization task, and use low-level coding of input variables, which is unacceptable for chemists. On 
the other hand, specific algorithms developed directly for the optimization of catalytic materials are 
usable only for a narrow spectrum of problems. This paper presents an approach the main idea of 
which is to automatically generate problem-tailored genetic algorithms from requirements concerning 
the optimized materials. For a specification of those requirements, a formal description language has 
been developed. To automatically generate corresponding algorithms from the formal descriptions, a 
program generator is needed. In this paper, the requirements expressible with the description language 
are reviewed and an overall scheme of the approach is outlined. Finally, a first prototype of a program 
generator for algorithms generated from that language is sketched. 
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1. Introduction 
In chemistry, much effort is devoted to 
increasing the performance of industrially 
important chemical processes, i.e., to achieving 
a higher yield of the desired reaction products 
without higher material or energy costs. Over 
90% of the processes use a catalyst to speed 
upp the reaction or to improve its selectivity to 
the desired products. Catalyst are materials that 
decrease the energy needed to activate a 
chemical reaction without being themselves 
consumed in it. Catalytic materials often 
consist of several components with different 
purpose in the catalytic process to increase 
their functionality. The components typically 
can be selected from among many substances. 
Chemical properties of those substances 
usually constrain the possible ratios of their 
proportions, but since the proportions are 
continuously-valued, they still allow for an 
infinite number of catalyst compositions. 
Moreover, the catalyst can usually be prepared 
from the individual components in a number of 
ways, and the preparation method also 
influences the performance of the catalytic 

chemical process. Consequently, the search for 
catalysts leading to possibly high performance 
entails a complex optimization task with the 
following features: 
(i.) high dimensionality (30–50 variables are 

not an exception); 
(ii.) mixture of continuous and discrete 

variables; 
(iii.) constraints; 
(iv.) objective function  cannot be explicitly 

described, its values must be obtained 
empirically. 

Most common optimization methods, such 
as steepest descent, conjugate gradient 
methods or second order methods (e.g., Gauss-
Newton or Levenberg-Marquardt) cannot be 
employed to this end. Indeed, to obtain 
sufficiently precise numerical estimates of 
gradients or second order derivatives of the 
empirical objective function, those methods 
need to evaluate the function in points some of 
which would have a smaller distance than is 
the empirical error of catalytic measurements. 
That is why methods not  requiring any 
derivatives have been used to solve the above 
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optimization task – both deterministic ones, in 
particular the simplex method and holographic 
strategy [5,14], and stochastic ones, such as 
simulated annealing [1,11], or genetic and 
other evolutionary algorithms [6,12,13,15,16]. 
Especially genetic algorithms (GA) have 
become quite popular in the search for optimal 
catalytic materials, mainly due to the 
possibility to establish a straightforward 
correspondence between multiple optimization 
paths followed by the algorithm and way how 
the catalysts proposed by that algorithm are 
subsequently tested – namely, channels of a 
high-throughput reactor. Nevertheless, a lack 
of appropriate implementations still hinders 
them to be routinely used. Generic GA 
implementations do not address all the above 
features (i.)–(iv.), and the low-level coding of 
input variables makes them unacceptable for 
chemists. On the other hand, first experience 
with GA implemented specifically for the 
optimization of catalytic materials shows that 
such algorithms are usable only for a narrow 
spectrum of problems and have to be 
reimplemented for other problems. 

In this paper, we present an approach that 
can solve those difficulties: automatically 
generated problem-tailored GA for the 
optimization of catalytic materials from 
requirements concerning materials under 
consideration. For a formal specification of 
those requirements, we use the Catalyst 
Description Language developed at the Leibniz 
Institute for Catalysis (LIKat) in Berlin. 
Automatic generation of problem-tailored GA 
requires to first implement a sophisticated 
program generator, which translates formal 
descriptions into the corresponding GA. At 
LIKat Berlin, a prototype program generator of 
that kind has just been developed and is 
currently entering the early testing phase. 

In the next section, theoretical principles of 
GA are recalled and an overview of using them 
in the optimization of catalytic materials is 
given. Main requirements expressible with the 
Catalyst Description Language are reviewed 
and an overall scheme of our approach is 
outlined in Section 3. Finally, the first 
implementation of a program generator for GA 
generated from that description language is 
sketched in Section 4. 

 
 

2. Genetic Algorithms and Their 
Use in Catalyst Optimization 

The term "genetic algorithms" refers to the fact 
that their particular way of incorporating 
random influences into the optimization  
process has been inspired by the biological 
evolution of a genotype [3,7-10]. Basically, 
that way consists in: 
• randomly exchanging coordinates of points 
between two particular points in the input 
space of the optimized function 
(recombination, crossover), 
• randomly modifying coordinates of a 
particular point in the input space of the 
optimized function (mutation), 
• selecting the points for crossover and 
mutation according to a probability 
distribution, either uniform or skewed towards 
points at which the optimized function takes 
high values (the latter being a probabilistic 
expression of the survival-of-the-fittest 
principle). 

In the context of catalytic materials, it is 
useful to differentiate between quantitative 
mutation, which modifies merely the 
proportions of substances already present in 
the material and qualitative mutation, which 
enters new substances or removes present ones 
(Fig. 1).  

 

 
 

Fig. 1 Illustration of operations used in genetic 
algorithms; the values in the examples are 
molar proportions (in %) of oxides of the 
indicated elements in the active component of 
the catalyst 
 

The difference between qualitative and 
quantitative mutation is due to the specific 
meaning of the coordinates of points in the 
optimization of catalytic materials. However, it 
is not possible to express that meaning using 
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generic GA software, such as the Genetic 
Algorithm and Direct Search Toolbox of 
Matlab [2]. Indeed, generic GA software 
encodes coordinates of points with low-level 
data types, typically with real numbers or bit-
strings. But to encode the composition of 
catalysts and their preparation solely with low-
level data types is tedious, error-prone, and 
requires a great deal of mathematical erudition. 
Therefore, it is unacceptable for chemists to 
encode their optimization tasks in that way. 
This difficulty, together with the fact that 
generic GA software does not address all the 
above features (i.)–(iv.) of the considered 
optimization tasks gave rise to the 
development of specific genetic algorithms for  
the optimization of catalytic materials 
[6,12,13,15,16]. However, experience gained 
with those algorithms shows that they bring 
another kind of difficulties. Namely, any 
design decision made when a specific 
algorithm is implemented restricts the 
spectrum of problems for which the 
implementation can be subsequently 
employed. This can be a serious disadvantage 
since the change of focus to other kinds of 
catalytic materials and the emergence of new 
catalyst preparation methods may substantially 
decrease the usefulness of a specific GA 
implementation after several years. 

Main objective of this paper is to show that 
it is possible to tackle problems connected with 
a specific GA without having to resort to 
general GA software. The approach we 
propose is to replace an in advance developed 
specific GA implementation with an 
implementation that is automatically generated 
just immediately before it is used to solve a 
particular optimization task. Since at that time, 
all requirements concerning the problem are 
already known, this approach enables the GA 
implementations to be precisely problem-
tailored. Our approach is presented in the 
following section. 

 
 

3. Generating Problem-Tailored 
GA from Catalyst Descriptions 

To automatically generate problem-tailored 
GA implementations, we need a program 
generator, i.e., a software system that 
transforms given requirements to an executable 
program. Differently to a human programmer, 
a program generator needs the requirements to 
be expressed in a rigorously formal way. To 

this end, we use a Catalyst Description 
Language (CDL), developed at LIKat Berlin 
[4]. The language allows to express a broad 
variety of user requirements on the catalytic 
materials to be sought by the genetic 
algorithm, as well as on the algorithm itself 
(Fig. 2).  

 
 

Fig. 2 Example fragment of a CDL-description 
(description keywords are in boldface) 
 

Most important among them are the 
following requirements: 

a) Which substances should form the pool 
from which the various components of the 
catalyst are selected. 

b) In which hierarchy should the 
components from the pool be organized (Fig. 
3). CDL allows the specified hierarchy (called 
“ComposedOf hierarchy“) to be arbitrarily 
complex. At the highest level, it contains 
general types of components, such as active 
components, support, or dopants. Each of them 
may have its own subtypes, those again 
subsubtypes, etc.  

c) The number of components that may be 
simultaneously present in an individual 
catalyst, as well as the number of 
simultaneously present components of a 
particular type from the component types 
hierarchy (e.g., the catalyst should contain 5 
components altogether, 3 of which should 
belong to active components). 
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Fig. 3 Example hierarchy of component types, 
as depicted in the graphical user interface of 
the developed program generator 

 
d) A lower and an upper bound for the 

number of simultaneously present components 
(e.g., the catalyst should contain 4-6 
components altogether, 2-4 of which should 
belong to active components and 0-2 to 
dopants). By default, all numbers within those 
bounds occur with the same probability, but 
this can be changed through specifying ratios 
of probabilities of their occurrence. 

e) Proportion of a component or a type 
from the component types hierarchy in the 
catalyst, or its proportion within (another) type 
from the hierarchy (e.g., proportion of the 
support in the catalyst, or proportion of a 
particular active component among all active 
components). 

f) A lower and an upper bound for the 
proportion of a component (e.g., proportion of 
the support in the catalyst is 75 % - 80 %, or 
proportion of a particular active component 
among all active components is 20 % - 100 %).  

g) Linear equality or inequality con-
straints for any quantities (e.g., proportion of 
Mg among all active components + proportion 
of Mn among all active components = 50 %, 
lower bound for the proportion of active 
components > 5*upper bound for the 
proportion of dopants). Each such constraint 
may contain an arbitrary number of quantities, 
and each quantity may occur in an arbitrary 
number of constraints.  

h) The choice among several possibilities 
for the preparation of the catalyst, of any 
component, and of any type from the 
component types hierarchy. In addition, any 
step of the preparation (e.g., precipitation, 
calcination), and any of its features can be 
again chosen among several possibilities. In 

this way, the component types hierarchy is 
complemented with an arbitrarily complex 
hierarchy of choices. Moreover, that hierarchy 
can be applied also to quantities (e.g., the 
number of components simultaneously present 
in the material is 2, 4, or 6). 

i) Population size of the current 
generation. 

j) Descriptive information about the 
current experiment. 

k) Which particular implementation of the 
genetic operations selection, crossover and 
mutation should be employed. 

l) Which particular parts of the algorithm 
output should be stored in the database, and in 
which tables and fields should they be stored. 

m) Precision with which any part of the 
algorithm output should be stored in the 
database. The generated algorithm then during 
its search for new catalytic materials avoids 
finding those that within the given precision 
already exists in the database. 

 

 
 

Fig. 4 Scheme of the proposed approach to 
generating problem-tailored genetic algorithms 
according to CDL descriptions 
 

An overall scheme of the proposed 
approach is depicted in Fig. 4. The program 
generator accepts text files with CDL 
descriptions as input, and produces GA 
implementations as output. For the approach, it 
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is immaterial how such an implementation 
looks like. It can be programmed in various 
languages; it can be a stand-alone program or 
can combine calls to generic GA software with 
parts implementing the functionality that the 
generic software does not cover. If the values 
of the objective function have to be obtained 
through experimental testing, then the GA 
implementation runs only once and then it 
exits. However, the approach previews also the 
possibility to obtain those values from some 
simulation program instead. Then the GA 
implementation alternates with that program 
for as many generations as desired. 

Finally, the approach previews the 
possibility to place between the user and the 
program generator a graphical interface, the 
purpose of which is to remove from the users 
the necessity to write files with CDL 
descriptions manually, and the necessity to 
understand the CDL language and its syntax. 
To this end, the interface provides a series of 
windows through which a user can enter all the 
information needed to create a complete CDL 
description. 
 
 
4. Implementation 
The first prototype of a system generating 
problem-tailored GA has just been developed 
at LIKat Berlin and currently enters the early 
testing phase. It has been developed in Matlab; 
also the generated GA implementations are in 
Matlab and make use of its Genetic Algorithm 
and Direct Search Toolbox. The system 
follows the approach outlined in the previous 
section, including the graphical interface 
between the user and the program generator 
(Fig. 5). In addition, also the generated GA 
implementations contain a simple graphical 
interface, which shows the progress of the 
performed optimization, and allows to decide 
whether to run the implementation only once 
or which external program to use for 
simulation (Fig. 6). 
 
 
5. Conclusions 

The paper presents a novel approach to the 
optimization of the main factor influencing the 
performance of chemical processes – the 
catalysts used in them. The objective of that 
approach is to preserve the advantage of 
specific genetic algorithms for the optimization 
of catalytic materials, namely a chemically 

meaningful and mathematically undemanding 
way of formulating the optimization task, 
while at the same time dealing with its 
disadvantage – the narrow spectrum of 
problems for which such an algorithm can be 
employed.  To achieve this objective, we 
propose to automatically generate problem-
tailored GA from requirements expressed in 
some formal description language. The 
feasibility of the proposed approach has been 
partially confirmed through developing such a 
language, though completely can it be 
confirmed only through experience with a 
system implementing the approach, i.e., with a 
program generator for specific GA 
implementations. A prototype of a program 
generator has been developed at LIKat Berlin 
and is entering the early testing phase. Not 
surprisingly, its development has been much 
more demanding and time-consuming than the 
development of any particular specific GA 
implementation. From a long-time point of 
view, however, it actually saves development 
efforts. In addition, it tackles a much broader 
variety of catalyst optimization tasks than any 
specific GA could ever do. 

 

 

 
 
Fig. 5 Two example windows of the graphical 
interface allowing users to enter the 
information needed to create a CDL 
description 
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Fig. 6 Simple graphical user interface of the 
generated GA implementations 
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