
Methodologies of safety-related Software development

J. Börcs̈ok
HIMA Paul Hildebrandt GmbH + Co KG

Albert-Bassermann-Str. 28
68782 Br̈uhl

Germany

S. Schaefer
University of Kassel

Department of computer architecture
and systems programming

Institute of computer science
Germany

Abstract:Safety-systems mostly comprise hardware and software solutions. Until today, a lot of fixed wired sys-
tems are still operating without a microprocessor, i. e. without the assistanceof software. Due to the increasing
application of such complex hardware and software systems, the softwaresystems have to be considered regarding
safety as well as hardware systems. The development of a safety-related software system is similar to the develop-
ment of a safety-related hardware system. However, the calculation of reliability and availability for safety-related
software systems is far more complex. Mathematical approaches are derived from the models for safety-related
hardware.

Key–Words:software-development, safety-related systems

1 Introduction
This paper discusses the methodical analysis of soft-
ware used in safety-related applications. It provides
an description on a safe computer system software
technology and specifies in more detail the required
test procedures in the last section. However, the pa-
per does not claim to be complete, since studies and
methods have rapidly increased, particularly with re-
spect to object-oriented software system design and
programming design ([3]).

For several years, no combined software-
hardware solutions have been used in high risk en-
vironments in which safety systems are usually em-
ployed. The first developments in software environ-
ment did not follow methodical and/or structured pro-
cedures. Before methodical program development
procedures and structured software design techniques
were used, the program code was generated when
the programmer believed that the problem was un-
derstood. The result of this approach was a set of
extremely expensive test procedures leading in many
cases to the rejection of the software, to reprogram-
ming and improvement measures and finally to com-
pletely rewrite the software or parts of it.

In the early Seventies, the existing idea was to
approach software development in a structured way.
The well-known waterfall model with its severe phase
concept started to get accepted in academia and indus-
tries. The negative aspect of the waterfall model is the
considerable documentation effort resulting in a great
documentation quantity, even before a single software

part is developed. In the last few years, several soft-
ware developments and testing procedures were es-
tablished. Unfortunately, not every approach achieves
the same performance. Therefore, the selection of
the software development strategy is important for the
project. The IEC 61508, the standard application valid
for safety systems, even describes tool support for de-
signing safety-critical software and gives a structured
overview of the safe software development ([3]).

The remaining sections of this paper presents dif-
ferent design models to be followed during the de-
velopment phase such as the Waterfall model or the
V-Model and the advantages and disadvantages are
discussed. Furthermore, the paper describes different
software development procedures and safety require-
ments for safety related systems. In section 7, differ-
ent implementation procedures for the development of
reliable software are detailed. Section 8 presents dif-
ferent methods for proving and testing the software.
Finally, a short summary concludes at the end of the
paper.

2 Waterfall Model
In the waterfall model ([9]) the software development
phases are strictly separated from each other. The fol-
lowing phases are characteristic:

◦ Requirements analysis,

◦ Design,

◦ Specification,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 131

◦ Implementation,

◦ Integration,

◦ Operation.

Following a inflexible up-down method, a new
phase may only begin if the previous one is success-
fully completed. If problems, resulting from an up-
stream phase occur, development has to continue from
this phase. A consequence is that in some cases parts
of the performed development work has to be rejected.
The waterfall model is characterised by a clear and
systematic procedure juxtaposed too little efficiency
and flexibility. In praxis, projects may not be elab-
orated in such linear form and it might be necessary
to adapt already completed phases. Figure 1 shows a
typical strategy to develop software for safe systems.

Figure 1: Structural Software Creation for Safe Sys-
tems

3 Spiral Model
The software design in the spiral model is divided in
repetitive phases, until the desired result is achieved.
Therefore, the result is a repetitive design cycle in-
stead of linear procedure like in the waterfall model
([2]). Typical phases are:

◦ Object definition,

◦ Alternatives and risks analysis,

◦ Selection of an alternative,

◦ Development,

◦ Testing and result assessment,

◦ Next step planning, depending on the test result

◦ Original objective modification, if required.

The spiral model is much more flexible compared
to the waterfall model.

4 Rapid Prototyping
Using this model, a prototype with a particular speci-
fication is created as soon as possible. The prototype
is equivalent to the end software product without the
complete range of functions. The prototype is tested
to evaluate the design, specifications and requirements
([1]). If necessary, a new or modified specification has
to be created. Finally, the software is further devel-
oped to the final software product in accordance with
the updated specifications. It is typical for this design
to create different prototypes. The advantage in this
case is that, with the person requiring the software
accompanying the development process, the product
corresponds exactly to the customer’s instructions and
desires. Fault or undesired development approaches
are early recognised and corrected. Because no fixed
specification exists, the requirements are still modified
in the implementation phase. Therefore, the resulting
software is ”grown” and its design is not optimal.

5 V Model
Nation wide, the V model is increasingly popular
when developing software for governmental or mili-
tary customer. The V model is a generic description,
which does not describe any tools or methods ([8]).
For a specific project, the actual procedure has firstly
to be determined. Therefore, the V model can per-
fectly adopt to the defined objectives. The V model
uses specific models to support project management,
system creation, quality management, and configura-
tion management.

6 Software development for safety-
related systems

In industries and academia, the development of safety-
related software proceeds in three general phases:

◦ Defining objects for the reliability of the software to
be developed

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 132

◦ Taking appropriate measures for achieving those ob-
jectives

◦ Using verification methods to quantify the success.

Generally, this partitioning is not sufficient for
a formal structuring of safety-related software devel-
opment. It is necessary that the programming mod-
els adapt precisely to the specific problem. How-
ever, the next section describes fundamental measures
and techniques for developing safety-critical software
based on the simplified partitioning above.

One of the most important phases, whether with
software or hardware, is the phase of creating the
specification. During this phase, not only the func-
tional requirements for the program and/or hardware
are described in detail, but also the required character-
istics in terms of operating safety.

During the second phase, also known as the ac-
tual software implementation, the developer should
use not only techniques leading to a possibly fault free
program code, but integrate specific functions into the
program. The latter does not help accomplishing the
actual task, but detecting and repairing faulty states
during operation.

After completing the software, the third step be-
gins with a testing phase to determine if the specifi-
cation is correctly implemented. For software with
high safety and reliability requirements, it has to be
tested if the desired operating safety is achieved. This
is achieved with different methods, such as correct-
ness proof or empirical test procedures.

6.1 Determining the Safety Requirements
As mentioned earlier, the reliability and safety re-
quirements for a specific system including hardware
and software result from the intended application. The
higher the hazard potential, the more severe the pos-
sible damages in case of incorrect functioning, the
higher the requirements for developing the system.

Specific standards, such as DIN 31000/VDE
1000, DIN V 19250 or IEC 61508 [5], describe mea-
sures for quantifying the hazard potential and, starting
from this point, a rating in risk or requirement classes.
While analysing the safety requirements important for
the system to be developed, it has to be verified, which
features are essential for the software. These features
have to be described as a specification part and con-
sidered when test procedures are applied.

7 Implementation Procedure
Generally, to maintain a safe and reliable software
during implementation, the developer should fol-
low the common rules contributing to as few faults

as possible and code readability. The system-
atic application of correct programming techniques
is also economically profitable. The next para-
graphs briefly structured programming, modularisa-
tion, object-orientation, coding rules and how to prove
the reliability of software.

7.1 Structured Programming
For applications with safety-technical background a
large range of different programs are essential. When
developing safety-relevant software, a structured pro-
gramming style has to be developed. In this case, only
three different sequence constructs are allowed:

◦ Sequence (normal command sequence)

◦ Branching (for example if...then...else)

◦ Repetition (for example loops with for or while)

Limiting the constructs to these three fundamen-
tals, has not only the advantage to reduce program-
ming faults and improve the code readability, but
also eases the correctness proof using formal methods
([4]).

7.2 Modular Design
Structured programming alone cannot help control-
ling the increasing program complexity. This and the
fact that several programmers have to work on the
safety related program simultaneously are the reasons
for software modularisation. Each software part rep-
resents then a more or less cohesive block comprised
of data and algorithms belonging together themati-
cally or functionally.

Due to the obvious smaller module size compared
to an individual program, such a module can be far
better managed and tested. Faults can therefore be
avoided and/or detected more easily. In this way, for
each module a rather high reliability level may be
achieved. A large and complex program comprising
several modules will consequentially have a reduced
number of implementation faults. To achieve optimal
results in accordance with this concept, some specific
procedures have to be followed.

Module interfaces have to be defined and docu-
mented. A developer wishing to use an outside mod-
ule and access it from his module, has to consider
the other module as a ”black box”. This means that
the developer is able to use the outside module just
supported by knowing the interfaces and not having
any knowledge on its internal functions (capsuling).
The advantage is that internal algorithms of the mod-
ule may be modified and optimised, without effecting
other program parts, as long as the conformity with
the interface specification is given.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 133

If the module coupling is kept as small as possible
(”loose coupling”), the faults occurring in a module do
not affect the functioning of the other modules. The
module interface has to be designed in such a way that
an access from outside is only allowed for essential
data and functions.

7.3 Object-Orientation
The approach of the object-oriented programming
style is to create a program as problem reproduction
in such that the structure and commands of the pro-
gram conceptual formulation is reproduced ([7]).

Further, the problem is divided in entities each
representing a cohesive partial aspect of the problem.
Every entity is then modelled in the program code and
represented by an object. The same objects belong to
the same class.

A class consists in actual things or ideas, ab-
stracted from the problem context. All members of
this class have the same characteristics or features.
Starting from a quite general base class, further pre-
cise classes can be derived by inheritance. Features
defined for the base class are automatically inherited
to the derived class. Therefore, common features are
defined in common base classes and the classes im-
plicitly derived from them, have this features plus
some additional peculiarities. A base class describes
a characteristic or capacity more abstract, whereas the
description provided for the derived classes is always
concrete. Base classes often only help to describe gen-
eral concepts. Parameters and objects actually con-
tained in the program exist only because of the de-
rived classes. Therefore, a class represents a cohesive
description of a sub problem.

Requirements specific for a module such as object
minimisation in an interface or practicability of the
”black box” principal, have to be met during the class
implementation. Due to the object-oriented program-
ming, fulfilling modern requirements such as: data
capsuling, avoidance of global data structures, repeti-
tively, readability, maintainability etc., a particular el-
egant and easy approach is possible. All these fea-
tures represent main requirements for safety-related
software development.

7.4 Coding rules
When developing safety-oriented software, coding
rules are described by different test houses, even
if both approaches of structured programming and
object-orientation were applied consistently ([10]).

Without claiming to be complete, the next para-
graphs lists further guidelines, which a programmer
should consider when creating safe and reliable soft-

ware to fulfill the testing requirements demanded by a
test house.

When implementing algorithms, clear structures
should be preferred, as particular artful constructs do
not necessary lead to increased efficiency, but the code
can be difficult to understood.

The testing and verification methods should be
already considered during the implementation phase.
The documentation has to be detailed and has to ac-
company the complete project. Tested functions or
class libraries for a specific task should be used pref-
erentially. A part or the whole machine code can be
stored in a ROM rather than in a RAM to ensure the
program unalterability.

No undocumented or undefined language behav-
iours should be exploited, as the program functioning
with another compiler, libraries from other manufac-
turers or another operating-system version is not en-
sured.

When using real-time and multitasking appli-
cations, one should consider that the resources are
blocked as short as possible. The different, synchro-
nous executed program threads have to be correctly
synchronized when using common data or resources.

The actual program code implementation should
meet the instructions specified in the coding rules.
The result is a good readable and easily verifiable
source code. These two qualities are essential and
desirable with several proof procedures to verify the
correctness of the program.

8 Proving the Reliability

Informal proof procedures may already be used during
the development phase. Due to this measure, faults
can be detected in an early stage, leading to improved
quality and economic advantages. Such informal pro-
cedures are: inspection, review and walkthrough ([6]).
A comparison of different informal proof procedures
are presented in Table 1.

Using appropriate tools, structural analysis may
be performed. An extensive automated semantic study
of the control and data streams may be performed
based on the program code.

The program correctness proof is carried out
in accordance with severe formal and mathematical
methods. To provide such a proof, it is reasonable and
often necessary to make the program ”proofable”.

A fundamental method for testing the software
quality is the execution of tests, aiming to verify if the
program with a specific input behaves in accordance
to the specification. However, when testing complex
programs, the procedure cannot be complete, i.e. it
cannot be executed for the whole input range.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 134

Table 1:Comparison of Informal Proof Procedures
Criterion Inspection Review Walkthrough
Group com-
position

Moderator, author,
tester, user

Project team, client,
contractor

Author, colleagues,
testing person

Member
number

3-6 5-15 2-6

Duration 2 hours max. plus
preparation

1-2 days 2 hours max.

Objects Documents, includ-
ing agreements,
codes

Phase products,
Project plans, project
reports, problem
field

Documents, SW pre-
liminary design, SW
detailed design (e.g.
codes)

Objective Documents testing Analysis of project
states, problem solu-
tion, measures

Detecting faults and
incompleteness

Moment After document cre-
ation

Phase ending, mile-
stone

After document cre-
ation

Execution Check lists Agenda Idea exposition in
front of a public

Result Protocol with tested
doc, new inspection
if nec.

Protocol with deci-
sions

Protocol with faults,
incompleteness

8.1 Inspection
During an inspection, a group of developers or sys-
tem designers verify the current software project state
using checklists. The attention is turned rather to the
formal content and document correctness and less to
the program correctness. Documents compiled in dif-
ferent project phases are compared with each other to
verify the development. During the actual inspection
meeting, the detected defects are gathered. The ac-
tual program developers have no firm task during the
inspection. They should neither explain nor describe
their work as the documentation is examined on com-
prehensibility.

In the inspection wrap-up phase, a to-do list for
repairing the detected defects is created. The meeting
moderator should take care of defining the execution
changes, but does not have to control its success, as
this will be part of the next inspection.

8.2 Review
During a review, not only the quality and the state of
the developed program are inspected, but suggestions
for improvement are recommended and discussed. In
this phase, modifications or integrations to the project
guidelines are possible.

A review takes place at the end of a development
phase and is conducted by the project team members.
It has to be verified that the intermediary results, de-
fined in the project plan, have been achieved and if the
result corresponds to the requirements specification in
form and content. The review results, including sug-
gestions and new decisions, are recorded.

8.3 Walkthrough
During a walkthrough, the program is systematically
tested on the functional or source code level. The
software developer explains the program and with his
assistance it is checked for faults or inconsistencies.

In contrast to inspection and review, the software de-
veloper is always active during a walkthrough. This
proof procedure includes a more detailed analysis of
the object to be tested, compared to the previously
mentioned procedures. Walkthroughs rank among the
best modern instruments to proof the design correct-
ness. Hidden implementation faults can be early de-
tected, but a great effort is involved.

8.4 Structural Analysis
During the structural analysis, formal software fea-
tures are investigated using automated tools. Using
this procedure, one can receive information about the
control stream, the data stream, and the program se-
mantic. The analysis tool creates an output in form
of pseudo codes, formulas, algorithms, or graphical
structure images, which can be tested using the spec-
ification. If the correctness of such an image can be
immediately verified, this procedure can be roughly
compared to the program correctness proof. Further-
more such an analysis can help deducing reasonable
test procedures for white-box or black-box tests.

8.5 Correctness Proof
The program correctness can be proved, using scien-
tific mathematical procedures. Should the proof fail,
faultiness is not automatically demonstrated. One can
deduce from the failure an example situation, which
could lead to a program fault. To use this procedure,
an intensive training is essential. Furthermore it is
useful, if not necessary, to design and determine the
form of the program in such a way that this proof
procedure can be easily applied. By using this con-
cept appropriately, the program efficiency and devel-
opment may improve. The effort increases dispropor-
tionately to the dimensions of the program to be exam-
ined. Consequentially, this procedure cannot always
be utilized.

8.6 Testing
A test can be defined as a process to verify and val-
idate a system or its components. Testing safety-
critical software (not general functional tests) is one
of the most important requirements in addition to the
testing of hardware, when safety-related systems are
developed.

The results of the test procedure can be used
to evaluate integrity or safety. Test processes detect
faults which have to be repaired for increasing relia-
bility. The testing of safety-related hardware and soft-
ware is complex. Generally, tests are performed in
different phases during the system development. They
are referred to as:

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 135

Table 2:Test Procedures in Different Life Cycles
Life Cycle Phase Dynamical

Testing
Structural
Testing

Modelling

Analyzing and specifying the require-
ments

X X

Top level design X X X

Detailed design X X

Implementation X X

Integration tests X X X

System validation X X

◦ Module tests

◦ System integration tests

◦ System validation tests

Module tests include the assessment of small,
clear hardware and/or software functions. Due to the
program or component simplicity, detected faults at
this level are often easy to locate and repair.

System integration tests investigate the character-
istics of a module collection and aim for an actual
module interaction. Faults detected in this phase are
probably more difficult to repair than those detected
during a module test because the test arrangement is
more complex.

System validation tests should demonstrate that
the whole system meets the system requirements. Oc-
curred defects are often the result of lacks in the spec-
ification. They are extremely difficult to remove be-
cause these faults can only be corrected by reviewing
the whole development process. The test can be per-
formed in a dynamical or structural approach, or may
be based on a mathematical model. Test procedures
of different test cycles are presented in Table 2.

At the end of this section, the black-box and
white-box test procedure are briefly presented. Test
methods are often classified using the information
available to the persons performing the tests.

In black-box tests, the test engineer does not
know anything about the system implementation and
has to use the information about specification as base
for the tests. The black-box test checks whether the
system provides the results defined in the specifica-
tion. Black-box tests provide the highest level of inde-
pendence between developer and the person executing
the tests and are extremely profitable for independent
validation.

In white-box tests, information about the system
implementation is known. Most test methods are
based on the white-box approach. This technique can
be applied in all development stages, to hardware as
well as software. Knowledge of the internal structure
of an module simplifies the dynamical testing as tests
can be developed specifically for each module.

9 Conclusion

The paper gave a detailed overview of modern soft-
ware design and development for safety critical envi-
ronments. It discussed different design models popu-
lar in academia and industries.

It described the requirements to develop reliable,
safety-related software according to international and
national standards. Finally, the paper focused on dif-
ferent methods for actually proving the reliability of
the software, which are widely used in academia and
software companies.

References:

[1] D.C. Andrews JAD: A crucial dimension for
rapid applications development,Journal of sys-
tems management, 1991

[2] B. W. BoehmA Spiral Model of Software Devel-
opment and Enhancement,In: IEEE Computer.
Vol. 21, 1988.

[3] J. Börcs̈ok Electronic Safety Systems,Hüthig
publishing company, 2004.

[4] W. EhrenbergerSoftware-VerifikationHanser,
2002.

[5] IEC/EN 61508 International Standard 61508
Functional safety: Safety-related System,
Geneva, International Electrotechnical Commis-
sion.

[6] G.Myers The art of software testing,Wiley,
2004.

[7] B. Oesterreich Erfolgreich mit Objektorien-
tierung,Oldenbourg, 2001.

[8] A. Rausch et al.Das V-Modell XT. Grundlagen,
Methodik und Anwendungen,Springer, Heidel-
berg 2006

[9] W.W. Royce Managing the Development of
Large Software Systems,Proceedings of IEEE
WESCON, August 1970.

[10] VDI Software-Zuverlssigkeit, Grundlagen, kon-
struktive Manahmen, Nachweisverfahren,VDI-
Verlag, 1993.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 136

