
FPGA Implementation and System-Level Validation of Matrix
Converter Space Vector Modulation Algorithm

J. ANDREU, U. BIDARTE, JL. MARTÍN, A. ASTARLOA, J. JIMÉNEZ

Department of Electronics and Telecommunications
University of the Basque Country

School of Engineering, Alameda Urquijo s/n., 48013, BILBAO
SPAIN

Abstract: - Matrix Converter (MC) presents several advantages in some power electronic applications, but yet it
is not a mature option to be for industrial applications because some problems remain unsolved, for example
because theoretical descriptions, still, are not implemented in real designs. This paper shows a Matrix Converter
validation platform with the target of passing the control algorithm from Matlab-Simulink to Modelsim platform.
By means of a unique block, the MC modulator synthesizes the Double Sided Space Vector Modulation
algorithm. This modulator is used to control a Doubly Fed Induction Machine (DFIM). The proposed design
methodology allows a hardware description of the algorithm to be validated at system-level. This way, once the
functionality of the hardware circuit has been verified, the hardware design can be refined to produce
synthesizable model that can be implemented in a FPGA. This methodology makes possible to achieve a
hardware circuit that performs the functionality previously determined in the Matlab-Simulink environment.

Key-Words: - Matrix Converter, Space Vector Modulation, FPGA, System on Programmable Chip, Matlab-
Simulink, AC/AC.

1 Introduction
The market of power electronics shows a clear
tendency towards the following objectives: improving
the interaction between power electronic converters
and the grid, bidirectional power flow, high
efficiency and high switching frequency, reduced size
and high integration of complex solutions in a single
power module. The Matrix Converter (MC) [1]
presents an architecture with many of the before
mentioned characteristics and overcomes a lot of
problems of conventional power converters.
MC is an AC/AC converter, with an architecture
based on “all silicon” solution with no significant
reactive elements. It can operate in high and low
pressure environments, and at high temperatures,
such as space and submarine applications where the
use of electrolytic capacitors is restricted. MC is
inherently bidirectional and can operate in four
quadrants, so it can deliver or take power from the
grid [2].
Using appropriate modulation strategies, it is possible
to achieve sinusoidal currents at the grid and
sinusoidal voltages at the load [3], with a unity power
factor with any type of load. On the other hand, MC
control is a complicated task and has a large
computational load. Matlab-Simulink is a very useful
tool for the development of control algorithms for
power converters. To carry out the control of a real
prototype it is necessary to go beyond Simulink

simulations and implement the code in a real
integrated circuit. Up to now, DSPs have been widely
used to embed the power converters control
algorithms. Nowadays and, due to the arising of latest
generation integrated circuits such as FPGAs [4], new
possibilities for advanced control have emerged.
These chances can be: design time reduction, the
partial or total reconfiguration of the algorithm as a
function of the control strategy, integration of a spy
software to determine the constraints of the
algorithm, hardware implementation of the code,
design of FPGA hardware according to the needs of
memory of the algorithm, buses interconnection as a
function of the needs of information flow between the
different hardware blocks, fast prototyping, etc.
Usually, digital circuits implemented in FPGAs are
described using Hardware Description Languages
like VHDL or Verilog, while a powerful simulation
environment is needed to develop a proper test-bench
where the design will be simulated and verified. First,
this paper presents how a MC Space Vector
Modulation (SVM) control algorithm has been,
previously, described and tuned in Matlab-Simulink
environment, where a complete model of the whole
physical system has also been created. Second, the
algorithm has been described in VHDL and both
design platforms, Matlab and Modelsim, have been
connected by means of the use of common data files.
This way, the functionality of the hardware design

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 349

Fig. 1. Possible vectors to be applied in MC.

φi

βi

30º

iI
r

ier
iV
r

ωit

1

3

4

5 6

φi

βi

30º

iI
r

ier
iV
r

ωit

1

3

4

5 6

αo
outV
r

23

4

5 6

1
αo

outV
r

23

4

5 6

1

Fig. 2. Synthesizable reference vectors located in the sextant 1:

input current Iin and output voltage Vout.

can be validated at system-level. The first behavioral
VHDL description, once it is has been validated can
now be refined to produce a register-transfer-level
(RTL) model, from which the layout may be
synthesized using commercial FPGA Place-and-
Route tools.

2 MC Modulation Algorithm
Application of SVM [5] to MC allows an
instantaneous control of the output voltage and the
input power factor [6]. Eqs. (1) to (5) show the duty
cycles of the applied voltage vectors in order to
obtain the desired output voltage vector Vout, input
current Iin and the desired power factor cos φi. The
duty cycles are assigned to a determined switch
combination following fig. 1 and are related with the
time that four active vectors and one zero voltage
vector are applied each switching interval.

i

oi

in

out

v
v

aduty
ϕ

αβ
cos

)60cos()60cos(
3

2_
−⋅−

⋅⋅= (1)

i

oi

in

out

v
vbduty

ϕ
αβ

cos
)60cos()60cos(

3
2_ −⋅+

⋅⋅= (2)

i

oi

in

out

v
vcduty

ϕ
αβ

cos
)60cos()60cos(

3
2_ +⋅−

⋅⋅= (3)

i

oi

in

out

v
vdduty

ϕ
αβ

cos
)60cos()60cos(

3
2_ +⋅+

⋅⋅= (4)

)____(10_ ddutycdutybdutyadutyduty +++−= (5)

The possible switching states of MC (fig. 1) can be
represented with vectors; in this way, each of the
stationary vectors will be placed in the adjacent sides
of each sextant of the complex plane (fig. 2). Duty

Table 1. Examples of 14 vectors DS SVM sequences.
Sector

Iin Vout
Double Sided Sequence

1 1 0c -3 6 0a -4 1 0b

1 2 0c -3 9 0a -7 1 0b

1 6 0c -9 6 0a -4 7 0b

Symmetry

4 1 0c -6 3 0a -1 4 0b

4 5 0c -3 9 0a -7 1 0b

4 6 0c -6 9 0a -7 4 0b

Symmetry

6 1 0a -4 1 0b -2 5 0c

6 5 0a -1 7 0b -8 2 0c

6 6 0a -4 7 0b -8 5 0c

Symmetry

cycles depend on the angles formed between vectors
Iin and Vout and the corresponding bisectriz of the 60º
sector where they are located. Vector angle βi is
linked to Iin, αo is linked to Vout and φi is related with
the input displacement factor (fig. 2).
To obtain the low frequency average values of Vout
and Iin, SVM only determines the duty cycles of the
applied voltage vectors in a switching interval, but
the sequence in which they must be applied is not
determined. For this reason, there is a certain degree
of freedom that allows implementing more complex
techniques, such as Double Sided Modulation (DS
SVM) [5]. With this technique, the voltage vectors are
symmetrically distributed along the switching
interval, zero vectors are applied every quarter of
switching interval and only one switch state is
changed at each step, minimizing losses and
improving the quality of the waveforms controlled by
the MC.
If Iin is in the 4th sector and Vout in the 5th, the
corresponding switching times are: t_0c, t_c, t_a,
t_0a, t_b, t_d, t_0b, t_0b, t_d, t_b, t_0a, t_a, t_c,
t_0c, where:

{ }dcbaxTxdutyxt sw ,,,
2

__ ∈⋅= (6)

{ }cbaTdutyt swy ,,y
6

0_0_ ∈⋅= (7)

{ }cbayyyVectory ,,y)(0 ∈= (8)

where Tsw is the space vector modulator period (fsw
=1/ Tsw).
Each of the zero vectors: 0a, 0b, 0c (8) are applied for
a time interval t_0y (7), because zero vectors are
applied 6 times between the active vectors. In turn,
because of the symmetry of DS SVM, active vectors
are applied during half of their corresponding
switching time at each side of the symmetry axis.
Table 1 shows some possible combinations of the 14
vectors necessary for DS SVM when the measured
input voltage is the line voltage (the rest of sequences
are described in [7]). If the input voltage is the phase
voltage a new sequence Look-Up table must be
obtained.

A

cbc:+5
a a

a

B

abc

a

A

B

B

c

C

B

C

cca:-9

a

b

aab:-7

c

C

A

b

A

A

a

Zero vectors

b

cba

a

A

b

CC

CA

c

a

C

a

B

c

bac

C

b

C

aca:+6

C

B

cab

Rotating vectors

bbc:-8

c

A

c

b

B

A

B

ccc

c
b

a

c

cbb:-2
a

C

a

c c

C

b

B

acc:-3

b

A

B

A

a

A

b

B

B C

b

a

a

a

a
bcb:-5

aba:-4

c

C

B

C

ccb:+8

bca

b

a
b

B B

c

C

c

A

b

A

b

C

c

a
b

C C

b

b

B

B

B

b
c

C

B

A

a
b

A

a
abb:+1

A

a

bcc:+2

b

C

c

bba:+7

A

b

C

A

aac:+9
a

c

B B

A

C

a

acb

B

c

aaa

A

A

cac:-6

bab:+4

A

B

A

b

c

C

A

a

c

a

C

bbb

c

B

c
b

A

C

b

C

b

caa:+3

BB

B

Stationary vectors

c

a

c
b

c

A

c

baa:-1

c

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 350

3 Platform Validation

3.1 Matlab-Simulink Platform
The platform (fig. 3), in which matrix converter DS
SVM algorithm has been integrated, controls a DFIM
[8]. It includes the next seven main blocks: Reference
Generator, Control Loop, Modulator, MC, Grid, Input
Filter and DFIM.
The modulator algorithm has been synthesized in a
single functional block simplifying the
implementation and the debugging time of the
platform. The algorithm must calculate the duty
cycles (1)-(5) in each modulator period Tsw and so,
during the next period the corresponding vectors of
fig. 1 will be applied during the times associated to
these duty cycles. The selection of the vectors
depends on the sextant (fig. 2) in which Iin and Vout
are located. The vectors sequences are described in
table 1 and Vout and Iin are imposed by the control
loop in which the DFIM is connected.
The conventional approach in Matlab-Simulink is the
use of previously defined Simulink blocks, which is a
very tedious task, because a high number of
parameters must be correctly set and there is no
proper debug tool. All these problems are overridden
with the use of a single “S- Function” block (the
algorithm is described in detail in [7]). With this
method, the user has an entire control of the
execution timing of the SVM algorithm (which is very
important in the modulation technique). Here, S-
Function block is called with a fixed period (Tres)
defined by the clock resolution of the duty cycles.
The resolution parameter defines the number of times
in which the modulator period Tsw is divided. So the
resolution clock signal (clk_res) that defines the high
speed clock for the hardware circuit, has got a
frequency of fres= fsw *resolution and a period of Tres
= Tsw /resolution. By means of the S-Function, the
number of simulation blocks is reduced drastically,
the simulation speed of the entire platform is faster
than with discrete blocks, the implementation of the
algorithm is simplified and high level programming
language can be used (it can be coded in C or in
Matlab programming language). The synthesis of the
algorithm in an integrated circuit (microcontroller,
DSP or FPGA) is more straightforward, debugging is
easier using the Matlab incorporated debugger (it is
not possible in the other methods) and any additional
function can be easily included in the modulation
algorithm.
Fig. 4 shows the Simulink and Modelsim platform
validation diagram. The S-Function in the Simulink
platform, on one hand performs the modulation and,
on the other hand, writes in each DS SVM resolution

M
a
t
r
i
x

c
u
r
r
e
n
t

Duty cycles

Reference
Generator

Stator current

Control loop

POWER GRID

Reference

Stator
(V,i)

voltage, phase...

Asynchronous
Machine

B

Platform
validation

S-Function

Torque

Modulator

A

Stator Voltage

Input Filter

Input voltage(a,b,c)

MC

DFIM

Matrix input current

Rotor (V,i,we)

Rotor current (A,B,C)V
o
l
t
a
g
e

w*

C

Feedback (V, i, w)

WIND

Grid Model

Fig. 3. Matlab-Simulink power system model and validation

platform.

clock sample period (Tres) the input parameters of the
Modelsim platform. These parameters are written in
“modelsim_in.m” text file and are: the absolute time
of the simulation (time_abs), the relative time in each
modulation period Tsw (time_Tsw), the amplitude of
Vin and Vout of the MC and, at last, the angles αo and
βi (fig. 2) of Iin and Vout vectors respectively. With
these parameters Modelsim platform is able to
calculate for each instance the corresponding duty
cycles. So, these duty cycles will be written in
“modelsim_out.m” file and they will be validated
with the duty cycless calculated in Simulink platform,
which have been introduced by this platform
previously.

3.2 ModelSim Platform
In order to make possible the interaction between the
two design platforms (Matlab-Simulink and VHDL
design tools) early in the overall design flow, a top-
down design methodology for the hardware design
have been followed. The basic idea is to iteratively
refine a high level description down to the layout
level by systematically developing a hierarchy of
VHDL models [9].
As a first step, VHDL may be used to model and
simulate a fully functional description of the system,
allowing the FPGA/ASIC specification to be
validated prior to the detailed design.
This may be a partial description that abstracts certain
properties of the system, such as a performance
model to detect system performance bottle-necks
[10]. This is called system-level verification. The first
goal has been to validate a functional (also called
behavioural) VHDL description. That is to say, we
want to verify that the VHDL design and the Matlab
design perform exactly the same algorithm [11]. Fig.
5 shows a very simplified block diagram of the
hardware implementation.
In the first VHDL functional description the real
VHDL signal type has been used for digital signals
associated to input voltages, currents and vector

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 351

Po
w

er
Sy

st
em

M
od

el

SVM

Algorithm

SVM

Algorithm

0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

r.
p.

m

Reference and real rotor speed

Reference
fsw=1KHz clk=1000
fsw=5KHz clk=100

Analysis

Matlab Platform Modelsim Platform

modelsim_in.m

modelsim_out.msimulink_out.m

Po
w

er
Sy

st
em

M
od

el

SVM

Algorithm

SVM

Algorithm

0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

r.
p.

m

Reference and real rotor speed

Reference
fsw=1KHz clk=1000
fsw=5KHz clk=100

Analysis

Matlab Platform Modelsim Platform

modelsim_in.m

modelsim_out.msimulink_out.m

Fig. 4. Matlab-Simulink and Modelsim validation platform.

angles. The math_real VHDL package must be used
to manage real type signals, because it contains
common real constants and common real functions
[4]. Although the real type can not be synthesized by
actual FPGA software tools, it allows the system-
level simulation in order to compare results in the
Modelsim platform with results in the Simulink
platform (where real type signals are also used).
Although hardware description refinement is not the
aim of this paper, functional blocks must be refined
to produce a register-transfer-level (RTL) model,
from which the layout may be synthesized.
Fig. 6 shows the VHDL test environment that has
been developed to facilitate the interaction between
Matlab-Simulink and the hardware design tools. The
same VHDL platform can be used to verify models at
successive levels of refinement, from the first
functional model to the synthesizable RTL model. It
is composed of the next elements:
1. Text files: these files allow the interconnection
between both platforms. An input file,
“modelsim_in.m” in fig. 6, contains simulation input
vectors generated in the Matlab platform (fig. 4) and
an output file, “modelsim_out.m” in fig. 6, contains
the simulation results, which will be analyzed in the
Matlab environment (fig. 4).
2. File management and data conversion: it is
necessary to manage the files containing simulation
input vectors and output results using valid VHDL
sentences. The standard textio package allows
complex file management. Fig. 7 includes some of
the file management procedures available in this
package. Fig. 8 summarizes the VHDL process that
reads the input values from the “modelsim_in.m” file:
each resolution clock period (Tres) a new line
containing the values for every input signal is read,
then converted to digital signal in order to apply a
new simulation vector. On the other side, output

matrix
algorithm
processor

control and
synchronization

subsector
determination

PhaseABC
generator

Vin and Vout
sextant

determination

resolution
Tsw
clk
rst

Vin

Vout

αo

βi

t_i subsect

sext_i
sext_v

phaseA
phaseB
phaseC

matrix
algorithm
processor

control and
synchronization

subsector
determination

PhaseABC
generator

Vin and Vout
sextant

determination

resolution
Tsw
clk
rst

Vin

Vout

αo

βi

t_i subsect

sext_i
sext_v

matrix
algorithm
processor

control and
synchronization

subsector
determination

PhaseABC
generator

Vin and Vout
sextant

determination

resolution
Tsw
clk
rst

Vin

Vout

αo

βi

t_i subsect

sext_i
sext_v

phaseA
phaseB
phaseC

Fig. 5. Hardware design block diagram.

resolution
Tsw

modelsim_in.m

Vin

Vout

αo
βi

file reader

data
conversion

sim. vector
gen.

clock

synchronization

initialization

others
Device

Under

Test

data

conversion

file writer

modelsim_out.m

t_i

sectors

phaseABC

tb_sf_modelsim.vhd

sf_hw.vhd

text digital signals

T

T

T

resolution
Tsw

modelsim_in.m

Vin

Vout

αo
βi

file reader

data
conversion

sim. vector
gen.

clock

synchronization

initialization

others
Device

Under

Test

data

conversion

file writer

modelsim_out.m

t_i

sectors

phaseABC

tb_sf_modelsim.vhd

sf_hw.vhd

text digital signals

T

T

T
Fig. 6. VHDL test environment.

digital signals follow the inverse scheme and are
finally stored in “modelsim_out.m” file. This file will
be analyzed in the Simulink platform and compared
with the results on that platform.
3. Initialization, synchronization and others: these
processes control the simulation initialization and the
synchronization between all modules.
4. Device Under Test (DUT): this is the VHDL
description of the matrix controller that we want to
verify. The name in the figure, sf_hw.vhd, means that
all the functionality contained in the Matalb S-
Function block has been included in this VHDL
hardware design.
Simulation results can be verified by means of the
Modelsim waveform editor, where usual timing
analysis can be performed. Fig. 9 shows a timing
diagram that contains the most representative input
and output signals. This environment is necessary to
study the correctness of the hardware design, but this
is not enough. The output results file
“modelsim_out.m” also contains the simulation
results, but with the same file format used in the
Matlab environment, in order to validate the whole
hardware system performance against the same
algorithm but described as a Matlab S-Function.

3.3 Methodology summary
The main steps of the described MC control
algorithm validation methodology are summarized in
the next lines:
1. The MC DS SVM algorithm, implemented in the S-
Function, is executed sampling the parameters
associated to the duty cycles (1)-(5). The sampling

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 352

period is determined by the resolution clock signal
clk_res. For each sample, fprintf instruction is
executed, this way, the afore mentioned parameters
are included in a text file (“modelsim_in.m”). At the
same time, for each period Tsw the calculated duty
cycles are written in “simulink_out.m”. The format of
these files is one column per parameter and one file
per resolution clock period (Tres).
2. “modelsim_in.m” is read by Modelsim environment
and then, the same algorithm (now described in
VHDL) takes as input parameters the data that
synthesizes the duty cycles (1)-(5).
As the model of the whole power system is not
needed in the VHDL environment, the simulation in
the Modelsim platform is greatly accelerated.
3. The DS SVM algorithm is executed in Modelsim to
generate its duty cycles (besides of other outputs such
as sextant of Vout and Iin, number of the vector in DS
SVM 14 vectors sequence, activated switches, etc.)
which will be written in “modelsim_out.m” text file.
4. Finally, the result of both environments (located in
“simulink_out.m” and “modelsim_out.m” files) are
analyzed and represented graphically to view if there
is any difference between the calculated duty cycles.

4 Results
The design of Matlab-Simulink platform is shown in
fig. 3. S-Function algorithm behavior has been
simulated taken into account transitory and stationary
conditions of the DFIM. The parameter to control by
the Simulink is the speed of the DFIM rotor. Fig. 10
contains the line to line MC modulated output voltage
and its filtered low frequency component. Fig. 11
shows how the output voltage of the MC follows the
low frequency reference voltage.
DFIM must accelerate until the reference speed of the
machine is reached. Fig. 12 shows the transitory and
stationary state of the rotor speed in two different
cases. As it can be seen, the profile depends on the
modulation period (Tsw) and the resolution clock
period (Tres).
It is important to take into account that the resolution
defines the number of times in which the modulator
period is divided and so, it will define the accuracy of
the time in which one vector is applied. If the
overshoot and the time in which the reference speed
is reached are taken into account, it is preferable to
apply a greater modulation frequency, even if not all
the vectors are applied due to lack of accuracy in the
resolution clock. In the two cases, the reference speed
of the machine is finally reached.
The time needed by the Simulink platform to simulate
the 1.5 secs. depends on, among others, Tsw and Tres.
If fsw =5KHz (1/Tsw) and resolution=100 are used,

Fig. 7. File management resources used from textio VHDL package.

Fig. 8. File reading process.

the elapsed simulation time is 0.91 hours, meanwhile
if fsw =1KHz and resolution=1000 are used the time
will increase to 1.95 hours.
These times are so long because of the large
computational load required by the entire platform
(MC, Control Loop, DFIM, etc.). For these
simulations, a PC with an Intel Pentium µP, 1 Gbyte
RAM and 3.2 GHz, has been used.
The time required by Modelsim platform is
insignificant (compared to the previous times). The
reason is that the test-bench developed in Modelsim
only includes the algorithm processor and it does not
need the rest of the blocks because they are replaced
by the entries contained in “modelsim_in.m” file.

-- process to read all coefficients in the input
file
load_coe: process(clk)

file coe_file: text open read_mode is
"modelsim_in.m ";
variable curLine_v : line;
variable curLineNum_v : natural := 0;
variable read_ok_v : boolean;
-- declaration of all variables to be read

begin
if (clk’event and clk = '1') then

if (curLineNum_v <= 100000) and not
(endfile(coe_file)) then
-- Read the current line
readline(coe_file,curLine_v);
-- Read all the coefficients in the
current line
read(curLine_v,abs_timer,read_ok_v);
if not read_ok_v then
report "fircplx_tb: Error reading real
coefficient from line: "& curLine_v.all
severity warning;
...
-- assign local variables to glabal
signals

else report "File reading end"&

curLine_v.all
severity failure;
end if;

end if;
end process load_coe;

INPUT FILE MANAGEMENT
procedure READLINE(file modelsim_in.m: TEXT;
L_in: out LINE);

procedure READ(L_in:inout LINE; VALUE_in: out
type);

OUTPUT FILE MANAGEMENT
procedure WRITE(L_out:inout LINE; VALUE_out: out
type);

procedure WRITELINE(file modelsim_out.m: TEXT;
L_out: out LINE);

type = bit_vetor, character, string, integer,
real, etc.

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 353

Fig. 9. Example of timing diagram from Modelsim.

Fig. 10. MC line to line output modulated voltage and its

filtered low frequency component.

1 1.05 1.1 1.15 1.2 1.25 1.3

-500

0

500

Reference line voltage and its low frecuency component

time (seconds)

V
ol

ts

1 1.05 1.1 1.15 1.2 1.25 1.3

-500

0

500

Low frecuency output line voltage

time (seconds)

V
ol

ts

Fig. 11. Reference and its low frequency voltage

(upper); low frequency output voltage (lower).

0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

r.
p.

m

Reference and real rotor speed

fsw=1KHz, clk res=1000

fsw=5KHz, clk res=100

Reference

Fig. 12. Reference and real DFIM rotor speed.

In this way, this file replaces the control loop, DFIM,
etc.
In principle, the fact that DS SVM calculates the 14
vectors to be applied does not ensure these vectors
will be applied. Because of this, a resolution clock,

with a frequency of fres >> fsw, must be used (for
example 1000 times higher). So, the algorithm must
check if the elapsed time since the beginning of the
Tsw is included between the time intervals of DS SVM
sequence. In this way, the vector corresponding with
the interval in which the resolution clock is sited will
be applied. If this timer has not enough resolution
and the calculated duty cycles are sufficiently small
(for example, the vector 3 in fig. 13), the timer will
not pass through the interval associated to this vector,
and then, it will not be applied. So the average value
of Vout and Iin will not coincide throughout this period
with the value of the reference dictated by the
control.
Fig. 13 shows comparative results of the duty cycles
calculated by each platform, Simulink and Modelsim.
The results of the upper side correspond with Tsw =
5KHz and resolution=100, while the lower figure
shows the absolute time in which each vector must be
applied (the last data have been calculated employing
Tsw = 1KHz and 1000 samples per modulator period).
In each graphic, each pair of columns show the
results obtained in each platform (left: Simulink and
right: Modelsim). As it can be seen, the calculated
duty cycles and times are equal for both platforms, so
the validation of the algorithm codified in VHDL is
satisfactory. In this way, the task of synthesizing into
a FPGA can be performed.

5 Conclusions
The power electronics community needs to make an
effort to commercialize advanced converters, such as
MC. In this sense, this article shows a methodology to
validate a MC control algorithm. Initially Matlab-
Simulink Space Vector Modulator environment

1.05 1.1 1.15 1.2 1.25 1.3
-1000

Modulated and low frecuency component of the output line voltage

1
-800
-600
-400
-200

0
200
400
600
800

1000

V
ol

ta
ge

 (
V

ol
ts

)

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 354

(which includes MC, Control Loop, DFIM, etc.) has
been described. Then, a validation platform is
presented. Its objective is to validate the behavioral
description of the same algorithm, but now using a
Hardware Description Language (VHDL). So, it can
now be refined to produce a register-transfer-level
(RTL) model, from which the layout may be
synthesized using commercial FPGA Place-and-
Route tools.
Besides of implementing safely the SVM algorithm in
Modelsim platform, this method looks for other
benefits such as: the use of arising integrated circuits
like FPGAs (which offer new possibilities like
reconfiguration, high speed execution, user defined
design, etc.) and contribution to the development of
Integrated Power Modules (IPMs).

6 Acknowledgement

The present paper has been financed by “Ministerio
de Educación y Ciencia” and “FEDER” within the
research project ENE 2004-07881-C03-01/ALT.

References:
[1] P. Wheeler, J. Clare, L. Empringham and M.

Bland, “Matrix converters: the technology and
potential for exploitation,” in The Drives and
Controls Power Electronics Conference, Vol. 5,
2001.

[2] H. Keyuan; H. Yikang, “Investigation of a matrix
converter-excited brushless doubly-fed machine
wind-power generation system,” Conference on
Power Electronics and Drive Systems (PEDS),
Vol. 1, Nov. 2003, pp. 743-748.

[3] L. Neft and C. D. Shauder, “Theory and design of
a 30-hp matrix converter,” IEEE Trans. on
Industry Applications, Vol 28, No.3, May / Jun.
1992, pp.546–551.

[4] H. Hajimowlana, “Design verification and
debugging FPGA implementations,” EDN (US
Edition), Vol. 48, No. 25, Nov. 2003, pp. 69-72.

[5] D. Casadei, G. Serra, A. Tani and L. Zarri,
“Matrix converter modulation strategies: a new
general approach based on space-vector
representation of the switch state,” IEEE Trans.
on Industrial Electronics, Vol. 49, No. 2, April
2002, pp. 370-381.

[6] L. Huber and D. Borojevic, “Space vector
modulation with unity input power factor for
forced commutated cycloconverters,” in Proc. of
IEEE Industry Applications Society (IAS), Vol 1,
1991, pp. 1032-1041.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2
Simulink/Modelsim vectors applied in DS SVM

Subsector. fsw=5000Hz, clock=100 samples/Tsw

D
ut

y
cy

cl
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3
x 10

-4

Subsector. fsw=1000Hz, clock=1000 samples/Tsw

A
bs

ol
ut

e
tim

e
(s

ec
s.

)

Simulink Modelsim Symmetry

1st
column

Simulink

2nd
column

Modelsim

1,4,7,8,11,14:
zero

vectors

Fig. 13. Comparison of calculated dutys and times in Simulink

and Modelsim platforms.

[7] J.Andreu, I. Mtz. de Alegría, J.L. Martín, S.
Ceballos, I. Gabiola, “Matrix Converter Double
Sided Space Vector Modulation: a fast way to
synthesize via S-Function,” in Proc. of the IEEE
International Symposium on Industrial Electronics
(ISIE), 2006, pp. 779-784.

[8] I. Mtz. de Alegría, J. Andreu, P. Ibañez, JL.
Villate, I. Gabiola, “Novel power error vector
control for wind turbine doubly fed induction
generator,” in Proc. of Industrial Electronics,
Control and Instrumentation (IECON), Vol. 2,
Nov. 2004, pp. 1218-1223.

[9] S. Meiyappo, J. Steele, “VHDL constructs and
methodologies for advance design verification,”
EDN, Vol. 44, Nov. 1999, pp. 65-86.

[10] G. Peyrot, “Behavioral modeling in VHDL
simulation,“ EDN (US Edition), Vol. 44, No. 22,
Oct. 1999, pp. 49-66.

[11] M. Benmohamed, S. Menriz, “VHDL
specification methodology from high-level
specification,” Journal of Computer Sciences,
Vol. 1, No. 2, Apr-Jun 2005, pp. 270-275.

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 355

