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Abstract: - Matrix Converter (MC) presents several advantages in some power electronic applications, but yet it 
is not a mature option to be for industrial applications because some problems remain unsolved, for example 
because theoretical descriptions, still, are not implemented in real designs. This paper shows a Matrix Converter 
validation platform with the target of passing the control algorithm from Matlab-Simulink to Modelsim platform. 
By means of a unique block, the MC modulator synthesizes the Double Sided Space Vector Modulation 
algorithm. This modulator is used to control a Doubly Fed Induction Machine (DFIM). The proposed design 
methodology allows a hardware description of the algorithm to be validated at system-level. This way, once the 
functionality of the hardware circuit has been verified, the hardware design can be refined to produce 
synthesizable model that can be implemented in a FPGA. This methodology makes possible to achieve a 
hardware circuit that performs the functionality previously determined in the Matlab-Simulink environment. 
 
Key-Words: - Matrix Converter, Space Vector Modulation, FPGA, System on Programmable Chip, Matlab-
Simulink, AC/AC. 
 
 
1   Introduction 
The market of power electronics shows a clear 
tendency towards the following objectives: improving 
the interaction between power electronic converters 
and the grid, bidirectional power flow, high 
efficiency and high switching frequency, reduced size 
and high integration of complex solutions in a single 
power module. The Matrix Converter (MC) [1] 
presents an architecture with many of the before 
mentioned characteristics and overcomes a lot of 
problems of conventional power converters. 
MC is an AC/AC converter, with an architecture 
based on “all silicon” solution with no significant 
reactive elements. It can operate in high and low 
pressure environments, and at high temperatures, 
such as space and submarine applications where the 
use of electrolytic capacitors is restricted. MC is 
inherently bidirectional and can operate in four 
quadrants, so it can deliver or take power from the 
grid [2]. 
Using appropriate modulation strategies, it is possible 
to achieve sinusoidal currents at the grid and 
sinusoidal voltages at the load [3], with a unity power 
factor with any type of load. On the other hand, MC 
control is a complicated task and has a large 
computational load. Matlab-Simulink is a very useful 
tool for the development of control algorithms for 
power converters. To carry out the control of a real 
prototype it is necessary to go beyond Simulink 

simulations and implement the code in a real 
integrated circuit. Up to now, DSPs have been widely 
used to embed the power converters control 
algorithms. Nowadays and, due to the arising of latest 
generation integrated circuits such as FPGAs [4], new 
possibilities for advanced control have emerged. 
These chances can be: design time reduction, the 
partial or total reconfiguration of the algorithm as a 
function of the control strategy, integration of a spy 
software to determine the constraints of the 
algorithm, hardware implementation of the code, 
design of FPGA hardware according to the needs of 
memory of the algorithm, buses interconnection as a 
function of the needs of information flow between the 
different hardware blocks, fast prototyping, etc. 
Usually, digital circuits implemented in FPGAs are 
described using Hardware Description Languages 
like VHDL or Verilog, while a powerful simulation 
environment is needed to develop a proper test-bench 
where the design will be simulated and verified. First, 
this paper presents how a MC Space Vector 
Modulation (SVM) control algorithm has been, 
previously, described and tuned in Matlab-Simulink 
environment, where a complete model of the whole 
physical system has also been created. Second, the 
algorithm has been described in VHDL and both 
design platforms, Matlab and Modelsim, have been 
connected by means of the use of common data files. 
This way, the functionality of the hardware design  
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Fig. 1. Possible vectors to be applied in MC. 
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Fig. 2.  Synthesizable reference vectors located in the sextant 1: 

input current Iin and output voltage Vout. 

can be validated at system-level. The first behavioral 
VHDL description, once it is has been validated can 
now be refined to produce a register-transfer-level 
(RTL) model, from which the layout may be 
synthesized using commercial FPGA Place-and-
Route tools. 
 
 

2   MC Modulation Algorithm 
Application of SVM [5] to MC allows an 
instantaneous control of the output voltage and the 
input power factor [6]. Eqs. (1) to (5) show the duty 
cycles of the applied voltage vectors in order to 
obtain the desired output voltage vector Vout, input 
current Iin and the desired power factor cos φi. The 
duty cycles are assigned to a determined switch 
combination following fig. 1 and are related with the 
time that four active vectors and one zero voltage 
vector are applied each switching interval. 
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The possible switching states of MC (fig. 1) can be 
represented with vectors; in this way, each of the 
stationary vectors will be placed in the adjacent sides 
of each sextant of the complex plane (fig. 2). Duty 

 

Table 1. Examples of 14 vectors DS SVM sequences. 
Sector 

Iin Vout
Double Sided Sequence 

1 1 0c -3 6 0a -4 1 0b

1 2 0c -3 9 0a -7 1 0b

1 6 0c -9 6 0a -4 7 0b

Symmetry 

4 1 0c -6 3 0a -1 4 0b

4 5 0c -3 9 0a -7 1 0b

4 6 0c -6 9 0a -7 4 0b

Symmetry 

6 1 0a -4 1 0b -2 5 0c

6 5 0a -1 7 0b -8 2 0c

6 6 0a -4 7 0b -8 5 0c

Symmetry 

 

cycles depend on the angles formed between vectors 
Iin and Vout and the corresponding bisectriz of the 60º 
sector where they are located. Vector angle βi is 
linked to Iin, αo is linked to Vout and φi is related with 
the input displacement factor (fig. 2). 
To obtain the low frequency average values of Vout 
and Iin, SVM only determines the duty cycles of the 
applied voltage vectors in a switching interval, but 
the sequence in which they must be applied is not 
determined. For this reason, there is a certain degree 
of freedom that allows implementing more complex 
techniques, such as Double Sided Modulation (DS 
SVM) [5]. With this technique, the voltage vectors are 
symmetrically distributed along the switching 
interval, zero vectors are applied every quarter of 
switching interval and only one switch state is 
changed at each step, minimizing losses and 
improving the quality of the waveforms controlled by 
the MC. 
If Iin is in the 4th sector and Vout in the 5th, the 
corresponding switching times are: t_0c, t_c, t_a, 
t_0a, t_b, t_d, t_0b, t_0b, t_d, t_b, t_0a, t_a, t_c, 
t_0c, where: 

 

{ }dcbaxTxdutyxt sw ,,,
2

__ ∈⋅=      (6) 

{ }cbaTdutyt swy ,,y
6

0_0_ ∈⋅=      (7) 

{ }cbayyyVectory ,,y)(0 ∈=      (8) 
 

where Tsw is the space vector modulator period (fsw 
=1/ Tsw). 
Each of the zero vectors: 0a, 0b, 0c (8) are applied for 
a time interval t_0y (7), because zero vectors are 
applied 6 times between the active vectors. In turn, 
because of the symmetry of DS SVM, active vectors 
are applied during half of their corresponding 
switching time at each side of the symmetry axis. 
Table 1 shows some possible combinations of the 14 
vectors necessary for DS SVM when the measured 
input voltage is the line voltage (the rest of sequences 
are described in [7]). If the input voltage is the phase 
voltage a new sequence Look-Up table must be 
obtained. 
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3 Platform Validation 
 
3.1 Matlab-Simulink Platform 
The platform (fig. 3), in which matrix converter DS 
SVM algorithm has been integrated, controls a DFIM 
[8]. It includes the next seven main blocks: Reference 
Generator, Control Loop, Modulator, MC, Grid, Input 
Filter and DFIM. 
The modulator algorithm has been synthesized in a 
single functional block simplifying the 
implementation and the debugging time of the 
platform. The algorithm must calculate the duty 
cycles (1)-(5) in each modulator period Tsw and so, 
during the next period the corresponding vectors of 
fig. 1 will be applied during the times associated to 
these duty cycles. The selection of the vectors 
depends on the sextant (fig. 2) in which Iin and Vout 
are located. The vectors sequences are described in 
table 1 and Vout and Iin are imposed by the control 
loop in which the DFIM is connected. 
The conventional approach in Matlab-Simulink is the 
use of previously defined Simulink blocks, which is a 
very tedious task, because a high number of 
parameters must be correctly set and there is no 
proper debug tool. All these problems are overridden 
with the use of a single “S- Function” block (the 
algorithm is described in detail in [7]). With this 
method, the user has an entire control of the 
execution timing of the SVM algorithm (which is very 
important in the modulation technique). Here, S-
Function block is called with a fixed period (Tres) 
defined by the clock resolution of the duty cycles. 
The resolution parameter defines the number of times 
in which the modulator period Tsw is divided. So the 
resolution clock signal (clk_res) that defines the high 
speed clock for the hardware circuit, has got a 
frequency of fres= fsw *resolution and a period of Tres 
= Tsw /resolution. By means of the S-Function, the 
number of simulation blocks is reduced drastically, 
the simulation speed of the entire platform is faster 
than with discrete blocks, the implementation of the 
algorithm is simplified and high level programming 
language can be used (it can be coded in C or in 
Matlab programming language). The synthesis of the 
algorithm in an integrated circuit (microcontroller, 
DSP or FPGA) is more straightforward, debugging is 
easier using the Matlab incorporated debugger (it is 
not possible in the other methods) and any additional 
function can be easily included in the modulation 
algorithm. 
Fig. 4 shows the Simulink and Modelsim platform 
validation diagram. The S-Function in the Simulink 
platform, on one hand performs the modulation and, 
on the other hand, writes in each DS SVM resolution  
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Fig. 3. Matlab-Simulink power system model and validation 

platform. 
 
clock sample period (Tres) the input parameters of the 
Modelsim platform. These parameters are written in 
“modelsim_in.m” text file and are: the absolute time 
of the simulation (time_abs), the relative time in each 
modulation period Tsw (time_Tsw), the amplitude of 
Vin and Vout of the MC and, at last, the angles αo and 
βi (fig. 2) of Iin and Vout vectors respectively. With 
these parameters Modelsim platform is able to 
calculate for each instance the corresponding duty 
cycles. So, these duty cycles will be written in 
“modelsim_out.m” file and they will be validated 
with the duty cycless calculated in Simulink platform, 
which have been introduced by this platform 
previously. 
 
3.2 ModelSim Platform 
In order to make possible the interaction between the 
two design platforms (Matlab-Simulink and VHDL 
design tools) early in the overall design flow, a top-
down design methodology for the hardware design 
have been followed. The basic idea is to iteratively 
refine a high level description down to the layout 
level by systematically developing a hierarchy of 
VHDL models [9]. 
As a first step, VHDL may be used to model and 
simulate a fully functional description of the system, 
allowing the FPGA/ASIC specification to be 
validated prior to the detailed design. 
This may be a partial description that abstracts certain 
properties of the system, such as a performance 
model to detect system performance bottle-necks 
[10]. This is called system-level verification. The first 
goal has been to validate a functional (also called 
behavioural) VHDL description. That is to say, we 
want to verify that the VHDL design and the Matlab 
design perform exactly the same algorithm [11]. Fig. 
5 shows a very simplified block diagram of the 
hardware implementation. 
In the first VHDL functional description the real 
VHDL signal type has been used for digital signals 
associated to input voltages, currents and vector  
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Fig. 4. Matlab-Simulink and Modelsim validation platform. 

 
angles. The math_real VHDL package must be used 
to manage real type signals, because it contains 
common real constants and common real functions 
[4]. Although the real type can not be synthesized by 
actual FPGA software tools, it allows the system-
level simulation in order to compare results in the 
Modelsim platform with results in the Simulink 
platform (where real type signals are also used). 
Although hardware description refinement is not the 
aim of this paper, functional blocks must be refined 
to produce a register-transfer-level (RTL) model, 
from which the layout may be synthesized. 
Fig. 6 shows the VHDL test environment that has 
been developed to facilitate the interaction between 
Matlab-Simulink and the hardware design tools. The 
same VHDL platform can be used to verify models at 
successive levels of refinement, from the first 
functional model to the synthesizable RTL model. It 
is composed of the next elements: 
1. Text files: these files allow the interconnection 
between both platforms. An input file, 
“modelsim_in.m” in fig. 6, contains simulation input 
vectors generated in the Matlab platform (fig. 4) and 
an output file, “modelsim_out.m” in fig. 6, contains 
the simulation results, which will be analyzed in the 
Matlab environment (fig. 4). 
2. File management and data conversion: it is 
necessary to manage the files containing simulation 
input vectors and output results using valid VHDL 
sentences. The standard textio package allows 
complex file management. Fig. 7 includes some of 
the file management procedures available in this 
package. Fig. 8 summarizes the VHDL process that 
reads the input values from the “modelsim_in.m” file: 
each resolution clock period (Tres) a new line 
containing the values for every input signal is read, 
then converted to digital signal in order to apply a 
new simulation vector. On the other side, output 
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Fig. 5. Hardware design block diagram. 
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digital signals follow the inverse scheme and are 
finally stored in “modelsim_out.m” file. This file will 
be analyzed in the Simulink platform and compared 
with the results on that platform. 
3. Initialization, synchronization and others: these 
processes control the simulation initialization and the 
synchronization between all modules. 
4. Device Under Test (DUT): this is the VHDL 
description of the matrix controller that we want to 
verify. The name in the figure, sf_hw.vhd, means that 
all the functionality contained in the Matalb S-
Function block has been included in this VHDL 
hardware design. 
Simulation results can be verified by means of the 
Modelsim waveform editor, where usual timing 
analysis can be performed. Fig. 9 shows a timing 
diagram that contains the most representative input 
and output signals. This environment is necessary to 
study the correctness of the hardware design, but this 
is not enough. The output results file 
“modelsim_out.m” also contains the simulation 
results, but with the same file format used in the 
Matlab environment, in order to validate the whole 
hardware system performance against the same 
algorithm but described as a Matlab S-Function. 
 
 
3.3 Methodology summary 
The main steps of the described MC control 
algorithm validation methodology are summarized in 
the next lines: 
1. The MC DS SVM algorithm, implemented in the S-
Function, is executed sampling the parameters 
associated to the duty cycles (1)-(5). The sampling 
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period is determined by the resolution clock signal 
clk_res. For each sample, fprintf instruction is 
executed, this way, the afore mentioned parameters 
are included in a text file (“modelsim_in.m”). At the 
same time, for each period Tsw the calculated duty 
cycles are written in “simulink_out.m”. The format of 
these files is one column per parameter and one file 
per resolution clock period (Tres). 
2. “modelsim_in.m” is read by Modelsim environment 
and then, the same algorithm (now described in 
VHDL) takes as input parameters the data that 
synthesizes the duty cycles (1)-(5). 
As the model of the whole power system is not 
needed in the VHDL environment, the simulation in 
the Modelsim platform is greatly accelerated. 
3. The DS SVM algorithm is executed in Modelsim to 
generate its duty cycles (besides of other outputs such 
as sextant of Vout and Iin, number of the vector in DS 
SVM 14 vectors sequence, activated switches, etc.) 
which will be written in “modelsim_out.m” text file. 
4. Finally, the result of both environments (located in 
“simulink_out.m” and “modelsim_out.m” files) are 
analyzed and represented graphically to view if there 
is any difference between the calculated duty cycles. 
 
 
4 Results 
The design of Matlab-Simulink platform is shown in 
fig. 3. S-Function algorithm behavior has been 
simulated taken into account transitory and stationary 
conditions of the DFIM. The parameter to control by 
the Simulink is the speed of the DFIM rotor. Fig. 10 
contains the line to line MC modulated output voltage 
and its filtered low frequency component. Fig. 11 
shows how the output voltage of the MC follows the 
low frequency reference voltage. 
DFIM must accelerate until the reference speed of the 
machine is reached. Fig. 12 shows the transitory and 
stationary state of the rotor speed in two different 
cases. As it can be seen, the profile depends on the 
modulation period (Tsw) and the resolution clock 
period (Tres). 
It is important to take into account that the resolution 
defines the number of times in which the modulator 
period is divided and so, it will define the accuracy of 
the time in which one vector is applied. If the 
overshoot and the time in which the reference speed 
is reached are taken into account, it is preferable to 
apply a greater modulation frequency, even if not all 
the vectors are applied due to lack of accuracy in the 
resolution clock. In the two cases, the reference speed 
of the machine is finally reached. 
The time needed by the Simulink platform to simulate 
the 1.5 secs. depends on, among others, Tsw and Tres. 
If fsw =5KHz (1/Tsw) and resolution=100 are used, 

 
Fig. 7. File management resources used from textio VHDL package. 

 
Fig. 8. File reading process. 

the elapsed simulation time is 0.91 hours, meanwhile 
if fsw =1KHz and resolution=1000 are used the time 
will increase to 1.95 hours. 
These times are so long because of the large 
computational load required by the entire platform 
(MC, Control Loop, DFIM, etc.). For these 
simulations, a PC with an Intel Pentium µP, 1 Gbyte 
RAM and 3.2 GHz, has been used. 
The time required by Modelsim platform is 
insignificant (compared to the previous times). The 
reason is that the test-bench developed in Modelsim 
only includes the algorithm processor and it does not 
need the rest of the blocks because they are replaced 
by the entries contained in “modelsim_in.m” file. 
 

-- process to read all coefficients in the input 
file 
load_coe: process(clk) 
 
file coe_file: text open read_mode is 
"modelsim_in.m "; 
variable curLine_v : line; 
variable curLineNum_v : natural := 0; 
variable read_ok_v : boolean; 
-- declaration of all variables to be read 
 
begin 
if (clk’event and clk = '1') then 

if (curLineNum_v <= 100000) and not 
(endfile(coe_file) ) then 
-- Read the current line 
readline(coe_file,curLine_v); 
-- Read all the coefficients in the 
current line 
read(curLine_v,abs_timer,read_ok_v); 
if not read_ok_v then 
report "fircplx_tb: Error reading real 
coefficient from line: "& curLine_v.all 
severity warning; 
... 
-- assign local variables to glabal 
signals 
 
else report "File reading end"& 

curLine_v.all 
severity failure; 
end if; 

end if; 
end process load_coe; 

INPUT FILE MANAGEMENT 
procedure READLINE(file modelsim_in.m: TEXT; 
L_in: out LINE); 
 
procedure READ(L_in:inout LINE; VALUE_in: out 
type); 
 
OUTPUT FILE MANAGEMENT 
procedure WRITE(L_out:inout LINE; VALUE_out: out 
type); 
 
procedure WRITELINE(file modelsim_out.m: TEXT; 
L_out: out LINE); 
 
type = bit_vetor, character, string, integer, 
real, etc. 
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Fig. 9. Example of timing diagram from Modelsim. 

 

 
Fig. 10.  MC line to line output modulated voltage and its 

filtered low frequency component. 
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Fig. 11.  Reference and its low frequency voltage 

(upper); low frequency output voltage (lower). 
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Fig. 12.  Reference and real DFIM rotor speed. 

 

In this way, this file replaces the control loop, DFIM, 
etc. 
In principle, the fact that DS SVM calculates the 14 
vectors to be applied does not ensure these vectors 
will be applied. Because of this, a resolution clock, 

with a frequency of fres >> fsw, must be used (for 
example 1000 times higher). So, the algorithm must 
check if the elapsed time since the beginning of the 
Tsw is included between the time intervals of DS SVM 
sequence. In this way, the vector corresponding with 
the interval in which the resolution clock is sited will 
be applied. If this timer has not enough resolution 
and the calculated duty cycles are sufficiently small 
(for example, the vector 3 in fig. 13), the timer will 
not pass through the interval associated to this vector, 
and then, it will not be applied. So the average value 
of Vout and Iin will not coincide throughout this period 
with the value of the reference dictated by the 
control. 
Fig. 13 shows comparative results of the duty cycles 
calculated by each platform, Simulink and Modelsim. 
The results of the upper side correspond with Tsw = 
5KHz and resolution=100, while the lower figure 
shows the absolute time in which each vector must be 
applied (the last data have been calculated employing 
Tsw = 1KHz and 1000 samples per modulator period). 
In each graphic, each pair of columns show the 
results obtained in each platform (left: Simulink and 
right: Modelsim). As it can be seen, the calculated 
duty cycles and times are equal for both platforms, so 
the validation of the algorithm codified in VHDL is 
satisfactory. In this way, the task of synthesizing into 
a FPGA can be performed. 
 
 
5 Conclusions 
The power electronics community needs to make an 
effort to commercialize advanced converters, such as 
MC. In this sense, this article shows a methodology to 
validate a MC control algorithm. Initially Matlab-
Simulink Space Vector Modulator environment 
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(which includes MC, Control Loop, DFIM, etc.) has 
been described. Then, a validation platform is 
presented. Its objective is to validate the behavioral 
description of the same algorithm, but now using a 
Hardware Description Language (VHDL). So, it can 
now be refined to produce a register-transfer-level 
(RTL) model, from which the layout may be 
synthesized using commercial FPGA Place-and-
Route tools. 
Besides of implementing safely the SVM algorithm in 
Modelsim platform, this method looks for other 
benefits such as: the use of arising integrated circuits 
like FPGAs (which offer new possibilities like 
reconfiguration, high speed execution, user defined 
design, etc.) and contribution to the development of 
Integrated Power Modules (IPMs). 
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