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Abstract

The jLab environment provides a Scilab like scripting language that is executed by
an interpreter implemented in the Java language. This language supports all the basic
programming constructs and an extensive set of built in mathematical routines that
cover all the basic numerical analysis tasks. The efficiency of the Java compiled code can
be directly utilized for any computationally intensive operations. Since jLab is coded in
pure Java the build from source process is much cleaner, faster, platform independent
and less error prone than similar C/C++/Fortran based open source environments
(e.g. Scilab, Octave).
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1 Introduction

Recently with the growing speed and potentiality of computers the populatity of integrated
scientific programming environments has significantly rising. These environments in general
demand much more time and space resources from the traditional compiled programming
languages (i.e. C++ and Fortran). However, they greatly facilitate the task of creating
quickly reliable scientific software, even from scientists with little programming expertise.

Two categories of general scientific software can be identified: computer algebra systems
that perform extensively symbolic mathematical evaluations (e.g. Maple [11], Mathematica
[10]) and matrix computation systems that are oriented toward numerical computations
and are well suited for engineering applications (e.g. the Matlab [13] that dominates at the
commercial market and the open source ”clones” Scilab [1] and Octave [12]). An excellent
recent comparative review of three well-established commercial products can be found in
[5, 6].

These systems are usually implemented in C/C++/Fortran and they are available in
platform specific binary formats or in also platform specific build from source configurations
(for the open source Scilab and Octave). To the contrary, the Java programming language
in which jLab is implemented allows platform independence. We have tested jLab on Linux,
Solaris and Windows XP and it runs in the same way, on all these different environments,
without any change of the code.

Contrary to some other Fortran and C based open source numerical computing environ-
ments such as Scilab and Octave, the compilation of the jLab’s source is extremely fast,
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simple and platform independent. It compiles in only a few seconds, while the Scilab or
Octave sources take several minutes. Moreover, at the later environments a lot of machine
specific specific details can perplex the building from source process.

The paper proceeds as follows: Section 2 presents the architecture of the components
that constitute the jLab system. Section 3 deals with the important subject of function
definition, and elaborates on the two different ways to define functions: as Java class files
and as jLab j-scripts. Section 4 outlines the main points involved with the modules that
perform the dynamic loading and execution of either Java class files, or jLab coded j-script
modules. Some important issues related to parsing of jLab programs are discussed in Section
5. Section 6 discusses the performance of jLab. Finally, section 7 concludes the paper and
presents some basic directions for future work.

2 The architecture of the system

The system at the top level is consisted of the following main components :

a. The java Execution engine (jExec), is the part that translates dynamically the jLab
programming language and executes the user’s commands. It is actually a flexible
interpreter coded in Java that is consisted of the following modules:

• The Lexical Analyzer. It tokenizes the input in order to permit the parsing phase
to operate on a token stream instead of the plain text.

• The Parser. The parser first checks the syntax of all the jLab’s programming
constructs. Then the parser executes each expression by building an expression
tree and evaluating the nodes of the tree by a top-down recursive traversal.

b. The Java toolboxes. These toolboxes consist of Java class libraries that need to adhere
only to a small set of conventions in order to be directly utilized from jLab. The
popularity of the Java language makes it easy to utilize excellent libraries for specific
domains, e.g. the JOONE library for neural networks [7], the WEKA data mining
system and the fuzzy expert system of Bigus [8].

c. The jLab toolboxes use the jLab interpreted language to implement program logic with
text code files called J-Files. We selected to follow the syntax of the Scilab language
[1].

3 Function Handling

In jLab a specific Java class (the FunctionToken class) is used to implement the functionality
of function handling and to represent any functions used in an expression. A function can
be implemented either as a compiled Java class file or as a jLab J-File. We will refer to the
former functions as compiled Java functions (abbreviated J-Classes). The later (i.e. the J-
Files) implement either functions and are refered as J-Functions or they are simply batches
of jLab code, the J-Scripts. The J-Scripts serve as ”batch” files for jLab’s commands. The
J-Files are interpreted and they resemble the syntax of Scilab’s .sce files.

The J-Functions can return multiple return parameters in a syntax [rv1, rv2, . . . ,]= some-
J-Function(arg1, arg2, . . .), where rvi denotes the return values and argi are the arguments
of the function.

The J-Files can be easily programmed since the jLab language is untyped and their
syntax is kept simple, Scilab-like and to a large extent Scilab compatible. They can be
directly executed in the jLab environment by placing them in directories accessible by the
jLabScriptPath jLab’s environment variable that has a similar role for J-File loading that
the Java’s virtual machine classpath has for class loading.

Their main disadvantage is their speed of execution: they are usually much slower than
the equivalent Matlab or Scilab functions. However this drawback can be bypassed when
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the programmer implements the equivalent functionality with a Java class file, i.e. a J-Class,
that can also be dynamically executed by the system. At this case the code is very fast,
since it is compiled Java code, and can compete even corresponding C++ or Fortran library
functions. Although some Java libraries perform even better than native code libraries we
should expect a delay by a constant factor of about 2 to 3, due to the virtual machine
overhead.

J-Classes offer the potential to easily extend the functionality of the system at several
application domains with Java code. We refer to the dynamically connected J-Classes that
aim to implement various toolboxes and are implemented with Java classes, as extension J-
Classes. The interfacing with J-Functions is encapsulated with the ExternalFunction class.
Each compiled J-Class operates on a list of objects of the Operand abstract class type. As
we will see, this design allows for maximum flexibility in parameter passing.

However, there are several other important classes that also represent Java class code,
although this type of code is integrated with the system. These are represented by the
InternalFunction class that is the base class for all the internal function types.

It is important to emphasize the basic distinction between Internal and External func-
tions: Internal functions are ”hardwired” to the system while the External can be dynam-
ically extended by the user. We should note at this point that External classes are loaded
by a special class loader (i.e. the ExternalFunctionClassLoader).

A method evaluate() defined in a FunctionToken class is used to evaluate each function.
The evaluation code first checks if the function name is overloaded by a variable. If so, it
evaluates the variable. Otherwise it calls the function manager (implemented with the class
FunctionManager) in order to find the function. The FunctionManager tracks dynamically
the extension J-Classes. The potentiality of the Java language for dynamic class loading
and execution allows jLab to incorporate easily with its ”kernel” any number of Java classes
without any recompilation of the system. All that is required is to place the compiled class
files in directories visible from the jLabClassPath variable.

The evaluation of an extension function is very fast since it is compiled Java code. How-
ever, a user with missing or limited Java experience is not expected to be able to implement
extension classes. These users can use the jLab’s scripting language and implement J-Files
(J-Functions, J-Scripts). A function is referred as UserFunction if it is implemented as a
J-File.

The evaluation task of each function whether ExternalFunction (i.e. Java code) or
UserFunction (i.e. J-File) starts by first evaluating the operands of the function. Then the
J-script or the function is evaluated by calling first the clone(), so the original functions stay
untouched.

Although the evaluation code depends on the function type, each evaluate function
adheres to the same signature in order to permit flexible evaluation of expression trees,
comprised of functions of various types (e.g. both Internal and External functions).

In order to evaluate an InternalFunction the system first checks whether the function
by itself is an expression. In the affirmative case all the childs of the expression are eval-
uated recursively. Having evaluated all the childs, the root node, which represents the
InternalFunction object obtains its value. This value corresponds to its return value, that
is returned. When the InternalFunction is not an expression it represents a number, which
is returned as the function’s return value.

The FunctionManager maintains the set of functions for the forementioned categories
of Internal functions (e.g. trigonometric, standard, matrix), and manages the dynamically
expanded set of User functions (both J-Functions and J-Files). Java class files that imple-
ment external extension J-Classes are loaded by a specific class loader, the JClassLoader.
Another type of loader, the J-File loader, loads the J-Files (i.e. the UserFunctions). The
FunctionManager starts by constructing a number of internal functions. A function is pro-
cessed by first checking whether it is a UserFunction (i.e. a jLab piece of code coded as
J-File). In the case that the search outcome is negative, the external J-Classes becomes the
target. Finally, the internal functions are scrutinized. We should stress the point that even
the J-Files are processed into Java UserFunction classes and then are handled uniformly.

The configuration of jLab is simple: as we already mentioned, two environment variables
are used to set the search path for J-Files (i.e. executable scripts) and Java classes (i.e.
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executable bytecodes) respectively. The first one is the already mentioned jLabScriptPath
variable and the other the jLabClassPath variable. Both are settable and adjustable from
within the graphical interface.

4 The Code Loaders

The custom code loaders are essential to the flexibility and extensibility of the system.
Contrary to similar systems, as Scilab [1] and Matlab [13], jLab can be easily extended with
specialized Java toolboxes that run as fast as the Java runtime permits. In order to achieve
this, jLab owns two types of code loaders implemented with different classes. The first one
is the Java class loader (abbreviated jLoader) that resembles the functionality of flexible
java class loaders [2], while the second the J-File loader accomplishes the elaborate handling
of J-Files (either J-Functions or J-Scripts).

The class loaders keep all the loaded classes in a global hashtable (implemented with the
Hashtable standard JDK class). The hashtable allows fast lookup at any loaded class.

The Java class loader maintains a root directory for the available jLab extension Java
class files (i.e. the external J-Classes). The String baseClassDir maintains the path of
this ”root” at the local file system and is a configurable parameter (e.g. for Unix/Linux
filesystems can be /home/user5/javaAppl5/jLab) that also can be supplied as a command
line argument at the jLab’s execution. The jLab class loader can locate and execute any
Java class file located under this ”root”. With this design we can obtain modular tree-based
organization of the jLab’s classes, extensibility and exploitation of the superb file-handling
facilities of current operating systems.

The baseClassDir parameter is very significant and is expected as a command line argu-
ment. The jLab is invoked with a command line
java jLab ”baseClassDir”
In Unix/Linux the command jLab can be executed by:
java jLab $PWD

The baseClassDir is in essence the directory where the jLab system is installed at the
local filesystem, i.e. the location of the file jLab.class which is the class that initiates the
system.

At the baseClassDir there can exist two other important but optional configuration files:
a.) the jLab.unix.properties and the jLab.win.properties. Whenever these files exist, jLab
initiates automatically the jLabScriptPath parameter. Depending on the operating platform
(Unix/Linux or Windows) the corresponding file is used. These property files are utilized
by the JFileLoader class that has the task of locating and retrieving the code implemented
in the jLab’s interpreted language.

The JClassLoader attempts first to locate a class in the formerly mentioned hashtable.
In the case that the class is not in this hash table, a search process follows. It uses a simple
and effective algorithm to locate the dynamically loaded Java class files: it expects them at
the subdirectory ./jExec/Functions in the jLab directory tree, e.g. at the previous example it
will be: /home/user5/javaApps/jLab/jExec/Functions. Whenever the search at the basedir
./jExec/Functions fails, the system tries to locate the class at all the directories associated
with the jLab’s jLabUserClasses environment variable. This order of class searching allows
the user to extend the existing class names with his/her own classes or J-Files and to keep
his/her classes separately from those supplied within the jLab system.

The JFileLoader is a class that can load and execute J-Files (both the J-Scripts and
the J-Functions) of the jLab language. Recall that the J-Function files implement jLab
functions while the J-Scripts simply organize a batch of commands, i.e. they are just a
couple of commands that are typed in text file. The JFileLoader in turn calls the Function-
Parser to parse the text of the J-File and to return a UserFunction class to jExec ready for
computation.

The ReflectionFunctionLoader is a class that calls a function from an external class
using reflection. The reflection system allows Java programmers to look and handle the
fields of objects that were not known at compile time. The Java’s reflection mechanism
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allows to add new classes to the jLab system at run time. With this mechanism the system
can dynamically inquire about the capabilities of the classes that were added. The Java
runtime system maintains runtime type identification on all objects, that keeps track of the
class to which each object belongs. This information is used by the virtual machine to select
the proper methods for execution.

Since it is quite easy to incorporate Java code into the jLab environment, at the extension
j-Class framework, the scripting code fits usually only for the implementation of the high
level application logic, while the number crunching numerical routines should be coded in
Java.

5 Parsing of Functions

As we already emphasized jLab is an environment that can be efficiently utilized with mixed
type programming: the high level structure of the program should be coded as a J-Script
and the number crunching routines in Java. The Java functions are implemented as external
J-classes with the ExternalFunction class and are important since they are the basic means
for the efficient extension of jLab’s functionality. Every Java programmer can extend easily
jLab by following a few simple rules for their format. The interface for passing parameters to
an external function (class ExternalFunction) is quite flexible allowing the implementations
of arbitrary functions.

Each user specified external function extends the ExternalFunction class. It returns a
generic structure of type OperandToken and accepts parameters in an array of Token classes.
Numeric parameters can be easily passed with a NumberToken structure. The Java runtime
object type checking operator instanceof is valuable for discovering the types of parameters
at runtime. Also, the StringToken is the class that represents Strings. Upon evaluation it
returns the token itself. It is very suitable for passing alphanumeric information in JLab
routines.

The FunctionParser parses user functions. We recall that user functions are implemented
as J-Files. The later contain either functions (i.e. the J-Functions) or they are simple script
files (i.e. the J-Scripts).

The UserFunction class is the class that handles the user edited J-File functions. This
class implements a method that takes the jLab code of the function as a string and returns
the UserFunction created. The J-File code of the function is represented with an Operand-
Token class. A standard java ArrayList class maintains the names of the parameter values
of the function. Similarly, the names of the return values are kept in a return variables
ArrayList.

A flag indicates whether the UserFunction class represents a J-script or a J-Function.
For J-Functions, the number of parameters that the function defines within its text body
should match the number of parameters at the calling sequence. J-Scripts can be evaluated
directly from their text code.

However, jLab has harder work in order to execute J-Functions. For J-Functions, a
local context of their local variables is first created. At the next processing step the for-
mal parameters of the function are initialized with the values of the actual parameters.
After the parameter passing has been performed, the execution of the function code can
be accomplished. The function code must be cloned so that the original code remains
untouched. That function evaluation code assigns the corresponding values to the return
variable. When multiple return variables exist those are collected within a matrix and this
matrix is returned.

The Interpreter (jExec) starts by separating the expression into tokens by using and
constructing an expression tree. These actions are performed with the aid of the parser. This
expression tree is subsequently evaluated. The flexible exception handling capabilities of
Java are utilized in order to store information about a possible error on expression evaluation
as one special variable.

The Expression class implements a tree where each node has a variable number of chil-
dren. Each node keeps information for the operator that it implements. Also each expression
keeps track of the index of the child being executed. The operator being held within the
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node is used in order to evaluate the expression accordingly. If this operator is an assign-
ment then we evaluate the right side and we assign to the left side variable the evaluation
outcome.

The tokenizer as is well known is one of the first phase of compiler processing [3]. Al-
though tools, as the lex (or flex) and yacc (or bison) are valuable, we implemented manually
a lexical analyzer and a parser in order to have maximum speed and flexibility.

The class that represents a number used in an expression is the NumberToken class. This
class holds a 2D array of complex numbers in a 3D array of real values, since each complex
number is represented by a 2X1 array to hold the corresponding real and imaginary value. A
wide variety of operations is supported on NumberTokens. These operations add, subtract,
multiply, raise to a power, scalar multiply, scalar divide, perform trigonometric functions
(e.g. sin, cos, tan etc.), exponentiations and logarithms.

Tokens are used also to represent complex jLab’s programming language constructs as
the while-do, if-then-else, for-loop. The syntax of the for-loop construct is:

for (forInitialization ; forRelation; forUpdate)
foreCode

Let us consider some concerns involving the implementation of the for-loop. The For-
OperatorToken is consisted from four other tokens: the forInitialization represents the ini-
tialization of the construct, and similarly the forRelation, the forUpdate and the forCode
represent the condition test, the updating of the contents and the code block that the for
construct executes repetitively.

Subsequently, the evaluation code of the ForOperatorToken evaluates first the forInitial-
ization token in order the initializations to take effect and then implements the logic of the
for-loop by repeatedly evaluating the forCode as long as the forRelation is true, updating
also the increment/decrement (i.e. evaluation of the forIncrement token).

Another important token type is the FunctionToken that is used to represent any func-
tions used in an expression. The FunctionToken class implements all the required function-
ality for executing the function. Specifically, it first checks if the function is overloaded by a
variable name. If so, the system creates a variable and sets the parameters of the function
as the limits of the variable. Next, it evaluates the variable with the limits and returns the
results. If the function name is not overloaded by a variable the system calls the Function-
Manager in order to find the function. If the FunctionManager detects that the function
is UserFunction it proceeds by evaluating it, by first evaluating its operands and then the
function code.

The evaluation of operators resembles the evaluation of functions. Each operator is
evaluated by the function evaluate that takes as parameters an array of Tokens and returns
an OperandToken.

Since jLab is untyped an effective mechanism for handling dynamically the current set of
variables and the objects to which they refer is required. jLab utilizes the built-in Hashtable
Java’s data structure in order to perform fast lookups. The dynamic class inspection facilities
of Java allow to test easily the type of data that is associated with a variable (with the
instanceof operator).

The system implements local variables by using the concept of nesting. In the case of
an J-File that does not have its own parameters it is executed at the global context. The
contexts are implemented with the well known pop() and push() stack operators [3].

6 Performance

The execution speed of an algorithm implemented in jLab depend heavily on the propor-
tion of processing performed in Java related to that implemented as a J-Script. Clearly,
the number crunching code should be coded in Java and only the control logic should be
coded as a J-Script in order to obtain rapid and flexible experimentation. We have performed
experiments with an SVM-Matlab toolbox downloaded from http://asi.insa-rouen.fr/ arako-
tom/toolbox/index.html, that implements in pure Matlab various current kernel and SVM
algorithms. The jLab based on the LibSVM Java implementation is on the average about
ten times faster than the pure Matlab version. However, the LS-SVM Matlab toolbox in-
corporates .MEX code compiled in C++ and is of comparable speed to our Java based
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LibSVM implementation. We should note that the ”pure” C++ implementation of the
LibSVM algorithms is only 2 to 3 times faster than the Java version. This fact surprised
us initially, and it can be explained by the significant advance at the design and implemen-
tation of the Java virtual machine environment. We have tested both the Java and C++
LibSVM implementations on a Pentium 4 PC at 2.6 GHz clock speed, both using the Fe-
dora Core 5 Linux (based on 2.6.15 Linux kernel) and the Sun Solaris 10 operating system
running at the same PC also. At both platforms we have used the recent version of the
Java Run time Environment (i.e. JRE ”1.5.0 07”) supplied by Sun Microsystems and the
GNU C++ compiler. We have tested also the jLab on the Windows XP platform, and the
important point that we have derived is that the execution speed is similar to the Linux
and Solaris based experiments. The only significant factor that affects the execution speed
is the JRE version: we have observed notable improvement in execution speed by using
later improved versions of the Sun Microsystems JRE. In particular the average training
time for the data of the classic UCI Sonar dataset, on a Pentium 4 1.8 GHz PC capable of
multibooting all the three tested operating systems were: a. Windows XP: 0.36 sec for
the main training accomplished by the Java class file, and 39 sec for J-Script preparation
of data for training b. Linux (Fedora Red-Hat 5, with 2.6.13 kernel: 0.41 sec for
Java class and 31 sec for J-Script preparation respectively. c. Sun/Solaris 10: 0.35 sec
for Java class and 32 sec for the J-Script. All the evaluated platforms have used the Sun
Microsystems Java Vitual Machine and JDK, version 1.5. Also, the GNU supplied JRE
(gcj, gjava) succeeds in compiling most of the jLab system (although there are problems in
compiling all the integrated system) but the resulting Java code does not run as efficiently
as with the Sun’s Java Virtual Machine. Also, the code of jLab can be downloaded from
page: http://infoman.teikav.edu.gr/∼stpapad/

7 Conclusions

The paper has presented a powerful scripting language that is executed by an interpreter
implemented in the Java language. This language supports all the basic programming
constructs and an extensive set of built in mathematical routines that cover all the ba-
sic numerical analysis tasks. These toolboxes can be easily implemented in Java and the
corresponding classes can be dynamically integrated to the system.

The jLab is based on a mixed mode programming paradigm:

• Java compiled code for the computationally demanding operations and

• Scripting code for fast implementation of the program’s structure.

This design permits to obtain both speed efficiency and flexibility while at the same time
allows the utilization of the vast amounts of scientific software that is implemented in the
Java language. Also, the implementation of jLab in pure Java allows a build from source
process is much cleaner, faster, platform independent and less error prone than similar
C/C++/Fortran based open source environments (e.g. Scilab, Octave).

We have compared its performance of jLab with a C/C++ and a Matlab version and
across different computing platforms (i.e. Linux, Sun/Solaris, Windows XP). Neuro-Fuzzy
algorithms can require enormous computation resources and at the same time an expressive
programming environment.

Future work will proceed with the porting of the JOONE library for neural networks
[7] and the WEKA data mining system. Furthermore we work on improving the parser in
order to allow more flexible contructs, and we improve the efficiency of the parsing phase,
in order to be able to compete with C/C++ parser implementations (e.g. Scilab, Octave).
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