
Rapid Development of Real-Time Applications Using
MATLAB/Simulink on TI C6000-based DSP

JUAN ZAPATA and RAMÓN RUIZ
Universidad Politécnica de Cartagena

Department of Electrónica,
Tecnologı́a de Computadoras y Proyectos

Campus Muralla del Mar
Spain

Abstract: This work discusses a hardware/software platform for educational purpose which integrates MAT-
LAB/Simulink, Texas Instruments (TI) eXpressDSP Tools andC6000 digital signal processing (DSP) target let
develop and validate digital signal processing designs from concept through code, in a typical professional vision
design-simulation-implementation. This platform automates rapid prototyping on C6000 hardware targets because
lets use Simulink to model digital signal processing algorithms from blocks in the Signal Processing Blockset,
and then use Real-Time Workshop to generate C code targeted to the TI DSP board by mean Code Composer
Studio (CCS IDE). The build process downloads the targeted machine code to the selected harware and runs the
executable on the digital signal processor. After downloading the code to the board, our digital signal processing
application runs automatically on our target. The library real time data exchange (RTDX) instrumentation that
contains RTDX input and output blocks let transfer data to and from memory on any C6000-based target. The
educational applications presented in this paper prove thefeasibility of this methodology for this platform.

Key–Words:Real-Time Signal Processing, Real-Time Workshop, MATLAB,Simulink

1 Introduction
With the rapid evolution in semiconductor technol-
ogy in the past several years, digital signal processing
systems have a lower overall cost compared to ana-
log systems. DSP applications can be developed, an-
alyzed, and simulated using software tools [1] [2] [3].
There are two types of DSP applications, non-real-
time and real-time. Non-real-time signal processing
involves manipulating signals that have already been
collected and digitized. Real time signal processing
places stringent demands on DSP hardware and soft-
ware design to complete predefined tasks within a cer-
tain time frame.

Unfortunely, the development of signal process-
ing applications with real-time algorithms are still dif-
ficult and often requires specialized training in a par-
ticular assembly language for the specific DSP. More-
over, programming in assembly language gives the en-
gineers full control of processor functions, thus result-
ing in the most efficent program for maping the algo-
rithm by hand. However, this is very time consuming
and laborious task, especially for today’s highly par-
alleled DSP architectures.

Due to the fast-paced nature of the digital signal
processing applications and to the limited life span of

new products, the time to market (TTM) is a very im-
portant figure of merit that is often overlooked. The
rapid realization of an implementation from its con-
cept to a product is of utmost importance. The scien-
tific community in general, and the signal processing
community in particular, have developed a number of
methods for the specification of higher level algorith-
mic concepts and ideas. Two equivalents alternatives
are graphical methods and language-based methods.
Graphical method includes block diagrams, state di-
agrams and schemes for the design of virtual proto-
types and language-based method includes hardware
description languages (HDLs). Simulink uses graphi-
cal block diagrams to create models for real-time im-
plementation of applications and then use Real-Time
Workshop to generate C code targeted to the TI DSP
board by mean Code Composer Studio (CCS IDE).

This paper presents a platform based on a TI
C6000 DSP target and Simulink/MATLAB/CCS can
develop digital signal processing applications and as
all these new technologies can be integrated in an easy
and fast form.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 104

2 Scheme Overview

The key aspect of rapid prototyping is automated code
generation. Under our scheme, the algorithm for a
given application is initially described with signal-
flow block diagrams with Simulink. Simulink is
a platform for multidomain simulation and Model-
Based Design for dynamic systems. It provides an
interactive graphical environment and a customizable
set of block libraries, and can be extended for spe-
cialized applications. Models built in Simulink can be
configured and made ready for code generation. Us-
ing Real-Time Workshop, C code can be generated
from the model for real-time simulation, rapid proto-
typing, or embedded system deployment. Fig 1 shows
the general scheme for rapid prototyping based on
MATLAB/Simulink and Texas Instruments eXpress-
DSP tools.

Link for Code Composer Studio

MATLAB

Embedded Target
For TI C6000 RTDX

Target Language Compiler

Code Composer Estudio IDE

DSP C6000

C Code Model

Block Model

RTDX Comm.

Real-Time Workshop

Executable Model

Simulink

Figure 1: Development scheme of MathWorks and
Texas Instruments eXpressDSP tools

Real-Time Workshop generates and executes
stand-alone C code for developing and testing al-
gorithms modeled in Simulink. The resulting code
can be used for many real-time and non-real-time
applications, including simulation acceleration, rapid
prototyping, and hardware-in-the-loop testing. Real-
Time Workshop uses target template files to translate
Simulink models into ANSI/ISO C code [4] [5]. The
target templates specify the environment on which
this generated code will run. Own custom targets
can be develop or use the ready-to-run configura-

tions and third-party targets supported by Real-Time
Workshop. Fortunelly, the Embedded Target for TI
TMS320C6000 DSP [6] consists of TI C6000 target
(C6000lib blockset) that automates rapid prototyping
on a C6000 hardware targets.

Embedded Target for TI TMS320C6000 DSP in-
tegrates Simulink and MATLAB with Texas Instru-
ments eXpressDSP tools. TI development tools pick
the C code generated with Real-Time Workshop [7]
for a customized hardware target supported for Em-
bedded Target for TI TMS320C6000 DSP and build
an executable file for this target-specific processor.
Additionally, one of Real-Time Workshop build op-
tions builds a Code Composer Studio project from the
C code generated and, therefore, all features provided
by Code Composer Studio work to help develop the
algorithm or application.

Figure 2: CCS IDE environment

Once target-specific executable is donwloaded to
the hardware and run it, the code runs wholly on the
target and the running process can be accessed only
from Code Composer Studio or from MATLAB with
two powerful tools: Link for Code Composer Stu-
dio [8] and Real-Time Data Exchange (RTDX).

Link for Code Composer Studio lets use MAT-
LAB functions to communicate with Code Composer
Studio and with the information stored in memory and
registers on a target. Figure 3 illustrates the main win-
dow of MATLAB. With the links, information can be
transfered to and from Code Composer Studio and
with the embedded objects, information about data
and functions stored on the signal processor can be
retrieved. Within the collection of hardware that Link
for Code Composer Studio supports, some features of
the link cannot be applied. This features or compo-
nents are four:

• Link for Code Composer Studio IDE — Lets
use objects to create links between CCS IDE and

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 105

MATLAB.

• Link for Real-Time Data Exchange Interface
— Provides a communication pathway between
MATLAB and the signal processor.

• Embedded Objects — Provides Object methods
and properties that let access and manipulate
information stored in memory and register on
signal processor, or in Code Composer Studio
project.

• Hardware-in-the-Loop — Enables to write func-
tions in MATLAB that exercise functions from
project on target processor. From MATLAB,
data can be generated, can be send to target, and
a function C can be used to manipulate the data
in the hardware.

Figure 3: The main MATLAB window

Real-Time Data Exchange provide a communica-
tion pathway to manipulate data and processing pro-
grams on the target digital signal processor. RTDX
offers real-time data exchange in two directions be-
tween MATLAB and the digital processor. The gen-
eral task flow for developing digital signal processing
programs through RTDX include:

• Create an RTDX link to desired target and load
the program to processor.

• Configure channels to communicate with the tar-
get.

• Run the application on the target and use MAT-
LAB to investigate the results of running process.

• Close the links to the target and clean up the links
and associated debris left over from your work.

3 System Configuration
In our scheme, the building process is initiated from
Simulink, with a model or algorithm. Next, the Target
language Compiler from Real-Time Workshop builds
a program automatically for real-time application in
C6000 environment. Using the make utility, Real-
Time Workshop controls how it compiles and links the
generated source code. Data can be sent, or received
to the application through the RTDX channels.

model.c

model.h

...
model.mk

system.tmf

make -f model.mk

model.exe

model private.h

make rtw.m

Executable C Program

Program

Model Code Custom

Makefile

Makefile
Generate

Code
Generate

Set Parameters

Configuration

Template

Makefile

Model

Simulink

User-developed model and template makefile

Automated build process

Figure 4: Automatic build process for Real-Time
Workshop

3.1 Real-Time Workshop Configuration
Real-Time Workshop analyzes the block diagram and
compiles an intermediate hierarchical representation
in a file calledmodel.rtw. The Target Language
Compiler readsmodel.rtw, translates it to C code.
Real-Time Workshop constructs a makefile from the
appropriate target makefile template. The make utility
reads the makefile to compile source code, link object
files and libraries, and generate an executable image,

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 106

called model (UNIX) or model.exe (Windows). Fig-
ure 4 illustrates the complete process. The box labeled
”Automated build process” highlights portions of the
process that Real-Time Workshop executes.

After generating the code, Real-Time Workshop
generates a customized makefile,model.mk. The
generated makefile instructs the make system utility
to compile and link source code generated from the
model, as well as any required harness program, li-
braries, or user-provided modules.

Real-Time Workshop createsmodel.mk from a
system template file,system.tmf and where sys-
tem stands for the selected target name. The system
template makefile is designed for a specific target en-
vironment. Exits the option of modifying the template
makefile to specify compilers, compiler options, and
additional information used during the creation of the
executable.

Real-Time Workshop creates themodel.mk file
by copying the contents ofsystem.tmf and ex-
panding lexical tokens (symbolic names) that describe
a model’s configuration. Real-Time Workshop pro-
vides many system template makefiles, configured
for specific target environments and development sys-
tems.

During the final stage of processing, Real-
Time Workshop invokes the generated makefile,
model.mk, which in turn compiles and links the gen-
erated code. On PC platforms, a batch file is created to
invoke the generated makefile. The batch file sets up
the proper environment for invoking the make utility
and related compiler tools. To avoid unnecessary re-
compilation of C files, the make utility performs date
checking on the dependencies between the object and
C files; only out-of-date source files are compiled.
Optionally, the makefile can download the resulting
executable image to target hardware.

To generate embedded C code, there are some
constraints on model blocks. It requiers that all blocks
in the model are either discrete time block or conti-
nous time block but can be sampled at discrete time.
Moreover, if multiple sample rates are used in a sys-
tem, it requires that the lowest sample will be chosen
as the base rate and other higher sample must be mul-
tiple time of the base rate. The purpose of these con-
straints is obtain a C code with real-time scheduling
support. This C code is in legacy main program and
subroutine style, an interrupt service routine (ISR) to
implement the real-time algorithm.

3.2 RTDX Communication Channels
Once time the code is downloaded and runned on a
specific hardware, Real-Time Data Exchange (RTDX)
can enable real-time bi-directional communication be-

tween C6000 hardware and a host application using
MATLAB. Fig 5 shows the general communication
scheme based on RTDX library.

Log
File (opt)

Client

Host

Target

app.

JTAG

Interface
RTDX

Target Library

Target

RTDX

Library
Host

CCS IDEInterface
COM

User
Interface

Host

Figure 5: RTDX communication scheme

This host application open and enable commu-
nication channels through the Link for Code Com-
poser Studio and the Code Composer Studio IDE.
Openings channels consists of opening and configur-
ing each channel for reading or writing, and enabling
the channel. The following steps describe the basic in-
structions that enable MATLAB to read data messages
from a target application [9]:

1. Declare the function.
function void = h readmsg;

2. Get a handle to Code Composer Studio IDE.
cc = ccsdsp;

3. Get a handle to RTDX channel “ochan”.
rtdx ochan = cc.rtdx;

4. Enable RTDX.
rtdx ochan.enable;

5. Open the RTDX channel for reading.
open (rtdx ochan, ’ochan’,
’r’);

6. Read data within a loop until no more data is
available.
tout msg = ’Timeout’;
NOMOREDATAMSG = ’No more data is
available’;
errmsg = NaN;
while(isempty(findstr(tout msg,
errmsg)))
try
data = (readmsgrtdx ochan,’ochan’,
’int32’);
disp(data);
catch

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 107

errmsg = lasterr
disp(NOMOREDATAMSG);
break;
end
end

7. Close the RTDX channel.
close(rtdx ochan, ’ochan’);

8. End Function.
return;

In the same manner, the following steps describe
the basic instructions that enable to write data mes-
sages to a target application:

1. Get a handle to Code Composer Studio IDE.
cc = ccsdsp;

2. Get a handle to RTDX channel “ichan”.
rtdx ichan = cc.rtdx;

3. Enable RTDX.
rtdx ichan.enable;

4. Open the RTDX channel for writting.
open (rtdx ochan, ’ichan’,
’w’);

5. Write data to the target application.
writemsg(rtdx ichan,
’ichan’,int32(data));

3.3 TMS320C6000 DSK
The choice of DSP-based hardware permits the de-
velopment of a powerful and highly flexible real-time
system. Due to its full programmability and high per-
formance, the TMS320C67xx processor mounted on
the TMS320C6000 DSK is a suitable device for re-
searching and testing DSP algorithms [10]. In the
work described in this paper, a personal computer was
equipped with the Code Composer Studio develop-
ment environment which helps to construct and de-
bug embedded real-time DSP applications. It pro-
vides tools for configuring, building, debugging, trac-
ing and analyzing programs. Texas Instruments DSP’s
provide on-chip emulation support that enables Code
Composer Studio to control program execution and
monitor real-time program activity. Communication
with this on-chip emulation support occurs via an en-
hanced JTAG link. This link is a low-intrusion way of
connecting into any DSP system. Emulator interface
provides the host side of the JTAG connection.

The heart of the TMS320C6000 DSK is the Texas
Instruments TMS320C6711 processor. The C6711 is
based on a VLIW-like architecture which allows it to

execute up to eight RISC-like instructions per clock
cycle.

The two data paths of the C6711 extend the func-
tionality of the data paths of the C6201 with support
for 64-bit data and IEEE-754 32-bit single-precision
and 64-bit double-precision floating-point arithmetic.
Each data path includes a set of four execution units,
a general-purpose register file, and paths for moving
data between memory and registers. The four exe-
cution units in each data path comprise two ALUs,
a multiplier and an adder/subtractor which is used
for address generation. The ALUs support both in-
teger and floating point operations, and the multipli-
ers can perform both 16x16-bit and 32x32-bit integer
multiplies and 32-bit and 64-bit floating point multi-
plies. The two register files each contain sixteen 32-
bit general-purpose registers. To support 64-bit float-
ing point arithmetic, pairs of adjacent registers can be
used to hold 64-bit data. In addition to the operations
supported by the C6201, the C6711 offers support for
floating-point reciprocal and reciprocal square root es-
timation, and for converting data between fixed- and
floating-point formats.

file B

Register

file A

.S1 .S2

.L2

.M2

.L1

.M1

.D2.D1

Memory

Register

Figure 6: TMS320C67xx’s core

4 Development of Real-Time Appli-
cations

The rapid prototyping platform has been assessed at
our laboratory and found to be well suited to develop
real-time signal processing algorithms. In this section
we describe the development of two applications for
real-time processing using the platform described in
this paper: a median filter and the envelop of a signal.
In both cases, the process of design and implementa-
tion is the same. First the Simulink model is created

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 108

with two RTDX channel for communication. Then, a
project is built and compiled in the CCS IDE through
Real-Time Workshop. This executable file is down-
loaded in the C6000-based target. Finally, data can
be transfered in real-time from MATLAB using two
programs based on RTDX instrumentation.

4.1 Median Filter
Fig. 7 shows a median filter. This model is created us-
ing elementary blocksets from Simulink libraries. The
median filter is a non-linear filter that is often used in
digital signal processing to smooth signals while at
the same time preserving edges. To get the result of
the filter a window is slided over the signal to filter.
Data are ordered in ascending order. The Median Fil-
ter block replaces the central value of window with its
median value. If the neighborhood has a center ele-
ment, the block places the median value there.

Once the median filter model was simulated by
passing a glitched signal and its performance to fil-
ter was checked then the real-time C code for a spe-
cific target was generated through Real Time Work-
shop. Before two channels for RTDX communication
were added. In this process, the executable applica-
tion was built and donwloaded automaticaly by CCS
IDE in the DSP target. At last, real-time digital data
was send for digital processing through two programs
based on RTDX instrumentation. Processed data were
received for the other channel in the same way for vi-
sualitation with differents tools of MATLAB.

Figure 7: Median filter Simulink Model

This is not an impediment to effective use of tools
provided for Code Composer Studio IDE. Moreover,
these tools may sometimes be necessary to use, fol-
lowing the tradional practice of development of real-
time applications using Code Composer Studio IDE
exclusively. CodeComposer Studio provides tools for
configuring, building, debugging, tracing and analyz-
ing programs. Texas Instruments DSP’s provide on-

chip emulation support that enables Code Composer
Studio to control program execution and monitor real-
time program activity.

4.2 Envelope of a signal

Fig. 8 shows the envelope of a signal. There are dif-
ferent methods of calculating the envelope of the nor-
malized signal. In this case, we have used a moving
average filter, with a window length of 60 ms and with
a overlapping between windows of 57 ms.

Figure 8: Signal envelop Simulink model

A sample of envelope of the normalized signal is
calculated as

G(m) =
1

nP1

·

nP1∑

i=1

y(i) · w(i)

wherem = 1 . . . ,M and M is the sample number of
the envelope of signal.nP1 is the sample number of
the window (60 ms in our case), andw is a Hanning
window.

Once this model was tested and verified, then this
algorithm was implemented and built it in DSP tar-
get. Now real-time analysis can be performed on the
application runninga and we can use graphical tool
provided in the MATLAB environment. A real heart
sound wav file was sent out from host towards DSK
and the calculated envelope was sent in from DSK to
host through of two channels RTDX.

Finally to point out that the C code generated by
this rapid prototyping platform is not the most effi-
cient. To obtain a better code and increase the per-
formance, there are techniques to improve and mod-
ify the C code generated but these techniques are not
rapid pricessly. Finally to point out that the C code
generated by this rapid prototyping platform is not

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 109

the most efficient. To obtain a better code and in-
crease the performance, there are techniques to im-
prove and modify the C code generated. However,
these techniques are not rapid and easy pricessly be-
cause designers must manually optimize the gener-
ated code in the code Composer Studio IDE. Alter-
natively, the code can be optimized by modifying
the corresponding blocks of Simulink model and us-
ing others blocks from the preoptimized C62x and
C64x libraries. When the code is generated, the Em-
bedded Target for TI C6000 DSP produces function
calls to preoptimized assembler implementations of
the blocks, increasing the efficency and performance
of critical zones of real-time application.

5 Conclusion

We have discussed in this paper a design methodology
of real-time algorithms and applications based on cut-
ting edge like MATLAB/Simulink, Code Composer
studio IDE, and EVM/DSK hardware based on C6000
DSP of Texas Instruments. The purpose of this work
is to provide an easy and efficient method for rapid
prototyping and development for real-time applica-
tions. The paper described and illustrated the most
important point to consider during the application of
this technology. This technology lets develop and val-
idate digital signal processing designs from concept
through code, in a typical professional vision design
simulation implementation. Moreover, the above dis-
cussion illustrated the use of the rapid prototyping
system is a fully automated program building process,
where the system is tested prior to the generation of
the executable file. This saves tremendous amount of
time, besides reducing the hardware cost.

In the continued effort to train more DSP engi-
neer, this type of technology incorporates an added
profit to the formation of new experts in this knowl-
edge area and can help to speed up the learning curve
and implementation of real-time DSP applications.

Another important benefit is that it avoids low
level hardware work that can be tedious and very
time consuming and therefore designers can focus
their efforts in another importants aspects of design
of real-time applications. This work describes the
step sneeded to write and RTDX host application us-
ing MATLAB and the Developer’s Kit for Texas In-
struments DSP. Finally we illustred this process with
some applications presented in this paper and its fea-
sibility is proved.

Acknowledgements: This work has been sup-
ported by Fundación Séneca of Región de Murcia and
Ministerio de Ciencia y Tecnologı́a of Spain, under

grants PB/63/FS/02 and TIC2003-09400-C04-02, re-
spectively.

References:

[1] M. Chacon and I. Valenzuela, “Fast image pro-
cessing application development scheme for the
dsk c6711 using matlab and simulink,” inDig-
ital Signal Processing Workshop, 2004 and the
3rd IEEE Signal Processing Education Work-
shop. 2004 IEEE 11th, 1-4 Aug. 2004, pp. 79–
83.

[2] F. Assis de Melo, M.A.; Leonardi and
A. La Neve, “Digital signal processing with
matlab and dsp kits,” inDigital Signal Process-
ing Workshop, 2004 and the 3rd IEEE Signal
Processing Education Workshop. 2004 IEEE
11th, 1-4 Aug. 2004, pp. 15–18.

[3] W.-S. Gan and S. M. Kuo, “Teaching dsp soft-
ware development: from design to fixed-point
implementations,”IEEE Transactions on Educa-
tion, vol. 49, no. 1, pp. 122–131, Feb. 2006.

[4] W. Gan, “Teaching and learning the hows and
whys of real-time digital signal processing,”
IEEE Transactions on Education, vol. 45, no. 4,
pp. 336–343, Nov 2002.

[5] R. Chassaing,DSP Applications Using C and
the TMS320C6x DSK. New York: John Wiley
& Sons, 2002.

[6] Embedded Target for TI TMS320C6000, The
MathWorks, Inc, March 2006.

[7] Real-Time Workshop, The MathWorks, Inc,
March 2006.

[8] Link for Code Composer Studio Development
Tools, The MathWorks, Inc, April 2006.

[9] D. Allensworth, “How to write an rtdx host
application using matlab,” Texas Instruments,
Tech. Rep., May 2002.

[10] TMS320C6000 Peripherals Reference Guide,
Texas Instruments, February 2001.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 110

