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Abstract: In certain real-time systems worst-case execution time estimates often lead to a waste of resources. In
hard real-time systems these types of estimates are essential to guarantee temporal requirements are met. However
in soft-real time systems using other measurements, such asaverage-case timing, to complement the worst-case
estimates can lead to better utilisation of resources whileensuring most, if not all, deadlines are met. We propose a
methodology to integrate modular average-case timing in Real-Time languages. Previously statically determining
average-case time, if possible, required rigorous mathematical techniques. Our approach, which is based on a
new programming paradigm called MOQA and is built on Real-Time Java, simplifies the process and allows for
automation.
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1 Introduction

Currently in Real-Time Systems, in general, cost es-
timations are based exclusively on worst case execu-
tion time (WCET). This of course is essential in hard
real-time systems where missing a deadline can have
catastrophic consequences. However in soft real-time
systems an occasional missed deadline is acceptable.

For certain tasks in a real-time system the WCET
may overshoot the actual time of a large proportion
of the executions of the task. Consequently budget-
ing on the WCET leads to a large waste of resources
on most executions of the task. In such cases addi-
tional information to complement the WCET to cal-
culate more flexible cost estimates would be advanta-
geous. An accurate measurement of a task’s average
case execution time (ACET) can assist in the calcu-
lation. The need for this in real-time systems has al-
ready been discussed in [1]. In industry the estima-
tions of ACET, obtained by measurement, are already
sometimes used to improve cost estimates.

ACET analysis is one of the most thoroughly
studied areas of Computer Science. As demonstrated
in [2] it is notoriously difficult involving a variety
of techniques which, typically, do not allow for au-
tomation. Currently algorithms must be analysed on
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a case-by-case basis and it is not feasible in general
to express the ACET of algorithms via a recurrence
equation, though excellent techniques are available to
solve these recurrences.

One of the main properties of ACET which
simplifies modular analysis of programs is IO-
compositionality [4]. We explain this concept in Sec-
tion 2 along with an explanation of why this property
does not hold in general for WCET.

We do not advocate of course to eliminate WCET
but to complement it with ACET information. Our
aim is to develop a framework that satisfies two cri-
teria: real-time constraints and modular average-case
timing. To do so we will use the general MOQA
language developed in Java which allows modular
timing. MOQA is then transformed and adapted to
the Real-Time Specification for Java (RTSJ) [3] crite-
ria. The obtained result, RT-MOQA, is the first RT-
framework dedicated to modular average-case timing
of real time systems.

2 Modular Average-Case Timing

The modularity of MOQA programs is guaranteed by
its compositionality property. Compositionality is a
traditional notion of Programming Language Seman-
tics which guarantees that the specification of each
program can be (inductively) defined in terms of the
specifications of the program’s basic components.

In a similar spirit, MOQA involves a novel notion
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of compositionality in a RT-context with respect to a
time measure T: compositionality of a language with
respect to T is informally defined as a property which
guarantees that the time of each program can be de-
termined from the time of its basic components. The
notion is so natural that it may lead one to conjecture
it holds for any time measure. We will see however
that this is not the case in general. Yet compositional-
ity is a central factor in determining the speed of the
program to an excellent degree of precision because
it is a computational necessity to determine this speed
directly from the accurate speeds of the components.

To simplify the presentation we will focus in what
follows on measuring the number of comparisons
made during the execution of a comparison based al-
gorithm. This is consistent with standard approaches.
Of course other timing parameters such as assign-
ments and swaps can be used to fine-tune matters.

We assume that every input has a given sizen and
that there is a finite setIn of inputs. Typically these
inputs are defined with respect to a given data struc-
ture. The execution time of a program P on an inputI
with respect to a time measure T is denoted by TP (I ).
The notation TP (n) indicates the restriction of the time
analysis to the input setIn.

The worst-case time of P for inputs ofA is defined
by:

TW
P (A) = maximum{TP (I)|I ∈ A}

We recall the standard definition of average-case
time of P on inputs fromA:

TP (A) =

∑
I∈A TP (I)

|A|

2.1 Overview of MOQA

Firstly, without being overly precise, we will define
compositionality as follows: P1;P2 indicates the se-
quential execution of program P1 followed by the pro-
gram P2. Compositionality with respect to a time
measure T holds if for every pair of programs P1;P2

the following property holds:

TP1;P2
= TP1

+ TP2

This definition however is a bit naive. Consider
for instance the case of the average-time where the
above notion of compositionality reduces to:

TP1;P2
(n) = TP1

(n) + TP2
(n)

The following example shows that this notion of
compositionality does not hold in general for the av-
erage time measure.

Example 1: Composition of Sorting Algorithms:
Consider the sorting algorithms quick sort and merge
sort, denoted by Q and M. Quick sort is well known
to have O(nlogn) average-case comparison-time and
O(n2) worst-case comparison time. We consider
a quick sort version for which the worst-case time
O(n2) occurs for sorted lists. It is well-known that:

TQ(n) ∈ O(nlogn) andTM (n) ∈ O(nlogn)

Thus:

TM (n) + TQ(n) ∈ O(nlogn)

However:

TM ;Q(n) ∈ O(n2)

The problem is that merge sort is passing on a
worst-case input of quick sort as the only input to the
quick sort algorithm. A more fine-tuned book keep-
ing of the outputs produced during a composition is
required in order to remedy this problem. In order to
set the stage for such fine-tuned book keeping we in-
troduce the useful notion of a multi-set below and a re-
lated more refined definition of compositionality: that
of IO-compositionality (Input-Output compositional-
ity).

Multi-sets are used to record program outputs and
their frequency of occurrence. A multi-set is a finite
set-like object in which order is ignored but multi-
plicity is explicitly significant. Thus, contrary to sets,
multi-sets allow for the repetition of elements. There-
fore, multi-sets{1, 2, 3} and{3, 1, 2} are considered
to be equivalent, but{1, 2, 2, 3} and{1, 2, 3} differ.
We refer to the number of times an elementx occurs
in a multi-set as themultiplicity M(x) of the element
x, i.e. M(x) = number ofx-occurrences in the given
multi-set.

We will use multi-sets for the purpose of output
book keeping and use the following notation:

OP (A) = the output multi-set for a finite input set A.

In MOQA the output multi-set contains all the
possible states each of the data structures can be in.
We refer to these multi-sets asrandom bags.1

Example 2: Random Bags:
Let Ln = the n! lists of sizen. Consider a program
P which extracts the first two elements of a three ele-
ment list. A list of two elementsa, b, when identified
up to order-isomorphism can only consist of two pos-
sible pairs:L2 = {(a, b), (b, a)}. Below we illustrate
that we obtain three copies ofL2 in the random bag
produced::

1Bag is an alternative name used for multi-set.
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( 1, 2 , 3) (1, 2) ( 1, 3 , 2) (1, 3)

( 2, 1 , 3) (2, 1) ( 2, 3 , 1) (2, 3)

( 3, 1 , 2) (3, 1) ( 3, 2 , 1) (3, 2)

OP (L3) = {(L2, 3)}

We can now give a more precise definition: a time
measure T isIO-compositional iff for every input-set
I:

TP1;P2
(I) = TP1

(I) + TP2
(OP1

(I))

As remarked in the introduction, compositional-
ity has the power to simplify analysis. Yet composi-
tionality is thus far not an RT-tool of the trade. This
is due to the fact that WCET is not IO-compositional
[4][5]. It is easy to verify that in general the following
inequality holds:

TW
P1;P2

(I) ≤ TW
P1

(I) + TW
P1

(OP1
(I)) ⋆

However, in general

TW
P1;P2

(I) 6= TW
P1

(I) + TW
P1

(OP1
(I))

The non-compositionality of worst-case time is
reflected by the fact that for real-time languages,
WCET is typically approached in practice in a non-
exact way, i.e. by relying on upper bounds, in partic-
ular by using the right hand side of equation⋆ above.
Fortunately, there are various techniques to determine
the WCET to a reasonable degree (e.g. [7]).

2.2 The MOQA Language

MOQA is a general “data-structuring language” intro-
duced in [6]. MOQA has good generality and can in-
corporate most algorithms which restructure data, in
particular of course sorting and searching algorithms.

In [5], in addition to IO-Compositionality, a for-
mal notion of a “randomness preserving” operation is
introduced. Randomness preservation is studied by
Knuth in a pioneering paper ([8]). The lack of ran-
domness preservation of algorithms such as heap sort
is identified in [9] as a fundamental obstacle towards
the derivation of a time-recurrence and hence prevents
automated average-case analysis.

[5] puts the notion of randomness preservation on
a formal basis and the main result guarantees that all
MOQA programs are randomness preserving. Com-
bining this result with the fact that randomness preser-
vation implies compositionality, we obtain that all
MOQA programs allow for the generation of time-
recurrences and the techniques of Figure 1 apply.
Note in [4] and [5] a solution for the average-time is
obtained for a MOQA version of heap sort.

Figure 1: MOQA Process

Figure 2: Series-parallel partial order

2.2.1 Example

The average-case time measure of quick sort is
not only IO-compositional but also distribution-
preserving. As a result it is possible to detect great
regularity in the execution and clearly identifiable pat-
terns in timing of quick sort [5].

It is possible, though we will not do this here, to
derive from the this type of distribution preservation
the well-known recurrence equation for quick sort’s
average time, which leads to the O(nlogn) solution.

2.2.2 Data Structures

The basic data structures in MOQA are Series-Parallel
Partial Orders (SPPO) which is a partial order that
only allows nodes to be in series, denoted by⊗,
or in parallel, denoted by‖. This means no cycles
are allowed in MOQA’s data structures. Figure 2
would be represented in series-parallel notation by
a⊗(b‖c)⊗ d.

With the guarantee that operations on these data
structures are randomness preserving and uphold the
series parallel property, the ACET analysis of pro-
grams is greatly simplified - random bags can be de-
termined and multiplicities calculated leading to eas-
ier derivation of the time.
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3 Specification of the Real-Time
Language for Modular-Timing

We incorporate the theoretical research in terms of
modular quantitative analysis, in particular timing
analysis, into Java for Real-Time Systems (JRTS) pro-
vided by Sun Microsystems. JRTS is an implemen-
tation of the RTSJ which incorporates the benefits of
Java along with rigorously specified real-time features
and so is suitable for engineering large scale real-
time systems. In spite of these benefits, predictable
average-case timing tools are not available for JRTS.

In this section we give an overview of how the
general MOQA language developed in Java which al-
lows Modular timing is transformed and adapted to
the RT-languages criteria in JRTS.

3.1 Real-Time Features

We use JRTS’s scoped and immortal memory as a ref-
erence memory model in RT-MOQA. This liberates
the programmer from the unpredictability associated
with garbage collection.

In the context of RT-MOQA loops and recursion
are managed rather than forbidden as they are in other
RT-languages. This is discussed in section 3.2.

For scheduling we are developing a strategy to
allow us to move timing estimates between average
and worst case depending on the nature of the system
and the variation in the execution of the handled task.
Knowing both the WCET and ACET also allows us to
redesign certain algorithms in order to narrow the gap
between the two measures, a situation advocated as
advantageous for scheduling tasks in real-time analy-
sis in [10].

The design of data structures in RT-MOQA is
very suitable to concurrency. Concurrent tasks can ac-
cess shared RT-MOQA data structures simultaneously
for reading. However write access on the same part of
a data structure must be synchronised.

Other important features, such as asynchronous
events, specified in the RTSJ implementation are not
considered at this stage.

3.2 Timing Predictability in RT-MOQA

In this section we discuss the unique features of RT-
MOQA which achieve the enhanced predictability.
We also discuss how RT-MOQA programs can be
analysed automatically to determine this information.

3.2.1 Data Structures for Automated Timing

SPPOs in RT-MOQA can be classified using induc-
tively defined types. This is necessary where a con-
trol statement produces many different structures in a
random bag. An inductively defined type (IDT) rep-
resents a class of SPPOs in terms of base cases and
constructors used for building the SPPO. An example
of an IDT is heap-ordered trees:

HOT ::= null|node
HOT ::= node(HOT ||HOT )

Note that although in the current version of
MOQA SPPOs are the data structures, future imple-
mentations may include other data structures as long
as the operations on them are random bag preserving.

3.2.2 Control Statements

Because of the nature of the data structures in RT-
MOQA we can guarantee that the control statements
in programs can have deterministic properties. This
is very important for performing automatic static pro-
gram analysis and for incorporating MOQA into real-
time languages. For the latter it is well known that
most real-time programs avoid the use of recursion
and unbounded loops because they make estimating
WCET very difficult. Despite this, in for example RT-
Java, there are no restrictions on how a programmer
can implement an algorithm using recursion or loops.
With RT-MOQA however there are very clear rules as
to how such algorithms can be incorporated and how
cost estimates can be made.

if-else Statements: There are strategies for cal-
culating probabilities for different branches in a pro-
gram’s execution, for example when comparing data
structure labels or when checking data structure sizes.

In general any type of conditional is allowed
as along as random structure preservation is upheld.
However there are some conditionals which cannot
have probabilities automatically calculated, e.g. those
which are dependent on the range of values input. For
such cases the probabilities have to be provided by the
user.

Recursion: For the purposes of real-time, it is
possible in RT-MOQA to ensure that recursion is con-
vergent, i.e. starting with some data structure, the op-
erations executed on it guarantee that one of the base
cases will be reached. For example, say we have a re-
cursive algorithm with a parameter which is a list and
a base case which checks if the size of the list is 1 or
0. Then each recursive call has to take a smaller list
as input meaning the base case will be reached and
termination is assured.
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In order to allow MOQA recursion to be automat-
ically analysed there are code templates, an example
of which is shown in Figure 3.

Alg(x)
p1(x)
if cb0(x) then b0(x)
else if. . .
else ifcr0(x) then Alg Calls0(x’)
else if. . .
p2(y)

Figure 3: Recursive Code Template

Loops: for loops are easily handled in static time
analysis because their execution is bounded.while
loops on the other hand in general are not easily
analysable because determining the number of execu-
tions is difficult. In RT-MOQA we again only allow
while loops that have conditions and bodies with oper-
ations on the data structures. Therefore we can guar-
antee termination and also derive timing information.
Like recursion, RT-MOQA enforces templates on the
structure ofwhile loops that allows a similar represen-
tation of the required average execution time.

3.3 Automatic Timing Analysis

Figure 1 gives an overview of the automatic analysis
of RT-MOQA programs. In brief, an analysis would
proceed as follows:

1. The user selects a class and method from where
the analysis begins. The code can be annotated
with information to aid the analysis, e.g. proba-
bilities which cannot be calculated automatically.

2. Soot ([12]) builds a call graph and a control-flow
graph (CFG) for each method.

3. Distri-Track traverses the call graph and CFGs.

(a) A timed-state graphis built for each
method invocation based on the its CFG.

(b) Each CFG branch has a probability calcu-
lated.

(c) Edges representing iteration have the num-
ber of iterations attached.

(d) Each node stores the time for the corre-
sponding statement executed on the ran-
dom bag at that point in the analysis.

4. The recurrence equation for the ACET is built
from the timed-state graph.

Figure 4: Input data distribution

5. Mathematical software or dynamic programming
can solve the recurrence to get the ACET.

4 RT-MOQA Example and Prelimi-
nary Evaluation

In this section we give an evaluation of the RT-MOQA
theoretical results for average-case timing by an ex-
perimental analysis of quick select.

Quick select is one of the simplest and most effi-
cient algorithms in practice for finding specified order
statistics in a given sequence. It uses the usual par-
titioning procedure of quick sort. It differs in that it
recurses on one of the partitions containing the order
statistic rather than on both.

Quick select in RT-MOQA is coded as a real-time
thread which executes in scoped memory. The main
operation of RT-MOQA used is thespilt operation
which partitions the input SPPO into 3 new SPPOs,
whose values are equal to, greater than, and less than
the selected pivot.

4.1 Evaluation Results

The experiments are undertaken using the JRTS JVM
on a Sunfire V240 running Solaris 10. We measure the
average, worst and best-case execution times of the al-
gorithm executed on a sample of 10000 randomly gen-
erated lists. The experiments are undertaken with lists
of varying sizes. We compare the resulting average-
case times with the number of comparisons calculated
from the recurrence equations obtained by the RT-
MOQA analysis tool.

The quality of the experimental average-case time
results is highly dependant on the distribution of the
input data. For our study we used the Jakarta Com-
mons Math [11] for the random generation of inputs.
Figure 4 shows the good distribution obtained for a
sample of 10000 lists of size 2048

In Figure 5 the number of comparisons multiplied
by a work coefficientis plotted with the experimen-
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Figure 5: Experimental results vs. RT-MOQA results

tally obtained ACET. Note that we use the coefficient
in our experimental evaluation to demonstrate that the
number of comparisons is proportional to the actual
ACET. The coefficient represents the average-case
time of the code attached to each comparison. The
graph shows that the results obtained by the analysis
tool for RT-MOQA give good estimations of the ac-
tual ACET obtained experimentally. This can mainly
be attributed to the exact ACET analysis achieved in
RT-MOQA. Other factors are the good distribution of
inputs and the RT-Java timing being very accurate.

5 Conclusion and Future Work

In this paper we described a new approach to in-
corporate automated modular average-case timing us-
ing MOQA in RT languages, specifically RT-Java.
We explain how average-case timing is important in
real-time systems for scheduling and budgeting of re-
sources when used in conjunction with worst-case es-
timates. Our approach has been validated using typ-
ical data-structuring examples. However, RT-MOQA
is continuously evolving into a more expressive and
reliable RT-tool.

MOQA, as described in this paper is dedicated
to data structuring programs. We will explore its
extension to more classes of programs, for example
low-level hardware programs which use series paral-
lel techniques.

In the automatic analysis tool the timing will be
improved to incorporate new measures which may be
necessary in different situations. Also WCET analysis
will be included.

With respect to the RT features of MOQA we in-
tend to explore a garbage collection strategy for RT-
MOQA, so that we can accurately time programs out-
side of scoped or immortal memory. We will investi-
gate improving RT scheduling by developing a formal

approach using ACET in combination with other pa-
rameters determined by the nature of the application.

The overall goal is that RT-MOQA will become
a complete RT-tool including ACET and WCET anal-
ysis. With RT-MOQA a library of timed components
will be developed.
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