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Abstract: Reinforcement Learning (RL) has as its main objective to maximize the rewards of an objective func-
tion. This is achieved by an agent which carries out a series of actions to modify the state of the environment.
The reinforcements are the cornerstone of the RL. In this work, a modification of the classic scheme of RL is
proposed. Our proposal is based on applying a reinforcement with uncertainty; namely, it adds a random signal to
the reinforcement. This uncertainty makes the agent incapable to learn. In this work, we consider this variation in
the reinforcements as noise added to the reinforcement; therefore, the proposal is to filter the reinforcement signal
in order to remove the noise. In particular, a moving average filter is used; this is one of the most simple filters
used in Digital Signal Processing. The proposed variation is tested in a classical RL problem, namely, Gridworlds
with different characteristics regarding size, structure and noise level. Results show that our proposed approach
finds the optimal solution under some conditions in which the classical procedure cannot find it.
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1 Introduction

Reinforcement Learning (RL) may be classified
within the unsupervised learning, and it has its origins
in psychology, namely in the “reinforced” theories
of the trial-and-error learning of Edward Thorndike
[5]. The reinforcement learning consists basically of
two elements, the environment and the agent, as it is
shown in the diagram of figure 1. Both elements are
interconnected via perception and action. The part of
perception provides the agent with information of the
state (st) in which it is at time (t), and the reinforce-
ment (rt) is the reward or punishment received after
a certain action (at−1) has been taken at the previous
time. The actions (a) that the agent performs are the
way to interact with the environment to obtain a cer-
tain target and the policy (π) is the strategy that fol-
lows the agent to obtain that target. The objective of
all reinforcement algorithms is to maximize the rein-
forcements (rewards), and in particular, to maximize
the so-called expected return Rt:

Rt =
T∑

k=0

γt · rt+k+1 (1)
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Figure 1: Basic diagram of a Reinforcement Learning
system.

where T represents the final state, and 0 ≤ γ ≤ 1
is a discount factor that measures the relevance of fu-
ture actions. One of the most interesting and remark-
able aspects of RL is that the algorithm is capable of
programming the agent just using rewards and punish-
ments without any explicit information about the way
to achieve its objective.

Common applications of RL are, for instance,
agents which play backgammon as a great master [6],
or a mechanical biped that can learn to walk [4]. Other
applications of RL involve the development of an op-
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timal marketing policy [2, 1]. One of the main advan-
tages of these systems is that they are able to learn by
themselves or by a given experience. Thus, they can
use the acquired knowledge and elaborate strategies to
find an optimal policy.

Most of the experiments of RL that can be found
in the literature are based on considering that the rein-
forcement has a constant value, but there are problems
in which the reinforcement signal cannot be consid-
ered constant; in addition, the noise actually appears
in the measures and it is absolutely necessary to di-
minish its effects for a successful performance of the
system.

The proposal of this work is to filter the reinforce-
ments as the way to find an optimal policy. As it is
shown in Section 4, classical RL algorithms have con-
vergence problems in the presence of noise. On the
contrary, our proposed methodology can find the op-
timal policy by reducing the influence of noise in the
reinforcements.

The remainder of the paper is outlined as follows.
In Section 2, the proposed methodology is presented;
Section 3 shows the experimental setup; in Section 4,
the achieved results are presented, and we end up the
paper with some conclusions in Section 5.

2 Proposed methodology

RL usually asumes that the reinforcements remain
fixed throughout the learning. In this work, we take
into account a temporary variation of these reinforce-
ments. The reinforcement signal has been evaluated
from the point of view of Digital Signal Processing,
using the result of filtering the reinforcement signal
corresponding to a certain state (it is necessary to re-
member that it assumes that exists a time variation in
this reinforcement). The simplest filtering is the Mov-
ing Average (MA) and it will be used throughout the
paper.

The expression of the simple average over the re-
inforcements is the following:

rt(s) =
1
N

t∑

i=t−N+1

ri (2)

being N the number of samples used in the average,
t the time instant in which average is calculated and s
the state which the reinforcement is associated to.

In Eq. 2, all the values have the same weight when
they are processed. This feature is different from other
filtering methods, such as the exponential average.
The MA can be easily programmed and requires very
few resources of the computer.

In this work, we focus on RL algorithms based on
Temporal Differences. This kind of algorithms does
not need a complete model of the environment to find
an optimal policy, since they update the action-value
function or the value function iteration by iteration
[5]. In particular, the Q-learning algorithm is used
here in its simple version (one step) [7].

3 Experimental Setup

In order to test the proposed approach, a classical RL
problem is used: the Gridworld. There are many refer-
ences about the use of RL in Gridworld environments
[3, 5].

In this environment, the agent can move within
this virtual space by taking only four actions: go up,
go down, go right or go left (step by step). When an
episode starts, the agent is in a certain initial state;
in particular, we consider the upper-left corner as the
initial state. All the reinforcements returned by the
environment are null (the noise has not yet been taken
into account) except in three cases:

1. The agent reaches the lower-right corner of the
Gridworld, which is the desired final state (rein-
forcement equal to +1).

2. The agent leaves the state matrix (reinforcement
equal to −1). In this case, the agent remains in
the same state that it was before taking the action.

3. The agent tries to access forbidden or inaccessi-
ble states.

It is also possible to consider that the Gridworld has
certain virtual walls which return a negative reinforce-
ment when the agent collides with them. Figures 2 and
3 show diagrams of the used Gridworlds; although
they represent a size 5 × 5 for the sake of simplic-
ity, the previous description is also valid for any other
size.

In this work, we consider two kinds of noise.
First, a Gaussian noise is added to the reinforcement
signal; this noise presents a zero mean and a variable
standard deviation between 0 and 0.3; this maximum
value of the standard devation is adequate because re-
inforcements are not completely masked by the noise,
but the agent can have problems if the noise is not ade-
quately processed. Second, an impulsive noise is also
taken into account; the amplitude of this noise varies
between 0.25 and 1, and the appearance probability is
20% and 10%, alternately.

The RL algorithm used in this work is the Q-
learning (one step), being the action-value function
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Figure 2: Classical Gridworld (size 5× 5).

Figure 3: Gridworld (size 5× 5) with walls.

updated as follows:

Q(st;at)←Q(st;at)+α[rt+1+γmaxaQ(st+1;at+1)−Q(st;at)]
(3)

where α is the learning rate, Q is the action-value
function, st is the state at instant t, at is the action
at instant t, and γ is the discount factor.

An ε − greedy policy is used to take the actions.
It means that the choice of the action is based on ana-
lyzing which action provides the highest value of the
action-value function the majority of the time (85% of
the time in our case, which corresponds to ε = 0.15),
whereas random actions are taken the 15% of the
time. These random actions are called exploratory
actions and allow to find the long-term optimal so-
lutions. This value of ε is optimum for our problem
(values between 0 and 0,5 were tested).

In order to ensure the statistical rigor, measures
were taken for 2500 episodes, being 106 the maxi-
mum number of iterations per episode. Moreover, in
order to show the behavior of the algorithms under dif-
ferent conditions, different sizes of Gridworlds (with
and without walls) were considered (5× 5, 8× 8 and
10× 10).

Our analysis takes into account the average num-
ber of iterations used to complete the 2500 episodes
(15 measures are carried out) for different noise pa-
rameters. It also analyzes whether the policy obtained
by the agent is correct in all the measures (if it is not
the case, the policy is labeled as wrong).

4 Results

4.1 Environment with Gaussian noise in the
reinforcement signal

In this section, the classical Q-learning algorithm and
our proposed algorithm (Q-learning with noise filter-
ing) are compared when the environment is contam-
inated by Gaussian noise. Results are shown in Ta-
bles 1 and 2. In these two tables, as well as in the
following ones, C means that 100% of the obtained
policies were correct, W stands for some wrong pol-
icy, and S means that the algorithm was stagnated in a
certain measure, and therefore, it did not achieve any
solution.
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Table 1: Results obtained by the classical Q-learning
algorithm. The standard deviation of the Gaussian
noise is indicated by σ.

σ
0.1 0.2 0.3

N
o
W
al
l

G
ri
dw

or
ld
Si
ze
. 5 · 5 C C W

8 · 8 W W W
10 · 10 W W W

W
al
l

5 · 5 C W W
8 · 8 W W W

10 · 10 W W W

C Correct policy. W Wrong policy. S Stagnation.

Table 2: Results obtained by the Q-learning algorithm
filtering the reinforcement signal in order to remove
the effect of the Gaussian noise.The standard devia-
tion of the Gaussian noise is indicated by σ

σ
0.1 0.2 0.3

N
o
W
al
l

G
ri
dw

or
ld
Si
ze
. 5 · 5 C C C

8 · 8 C C C
10 · 10 C C W

W
al
l

5 · 5 C C C
8 · 8 C C C

10 · 10 C C S

The comparison of Tables 1 and 2 shows that our
approach was clearly better, since it obtained a higher
number of correct policies even with standard devia-
tions considerably high (σ = 0.3 was a value rela-
tively high compared with the reinforcement signal,
whose maximum value was 1, which corresponded to
the goal state). Moreover, it should be emphasized
that there were not relevant differences between Grid-
worlds with or without walls.

4.2 Environment with impulsive noise in the
reinforcement signal

In this case, the classical Q-learning algorithm and
our approach are compared again, but when there is a
presence of impulsive noise in the reinforcement sig-
nal. Tables 3 and 4 show the results achieved for dif-
ferent values of the amplitude of the pulse (strength of
the pulse), and for different appearance probabilities
(10% ratio or 20% ratio).

Table 3: Results obtained by the classical Q-learning
algorithm in the presence of impulsive noise.

Strength Of the Pulse.

0.25 0.50 0.75 1.00

10
%

R
at
io
.

N
o
W
al
l

G
ri
dw

or
ld
Si
ze
.

5 · 5 C W W W
8 · 8 W W W W

10 · 10 W W W W

W
al
l

5 · 5 W C W W
8 · 8 W W W W

10 · 10 W W W W

20
%

R
at
io
.

N
o
W
al
l 5 · 5 C W W W

8 · 8 W W W W
10 · 10 W W W W

W
al
l

5 · 5 C W W W
8 · 8 W W W W

10 · 10 W W W W

C Correct policy. W Wrong policy. S Stagnation.

Table 4: Results obtained by the Q-learning modified
by the noise filtering.

Strength Of the Pulse.

0.25 0.50 0.75 1.00

10
%

R
at
io
.

N
o
W
al
l

G
ri
dw

or
ld
Si
ze
.

5 · 5 C C C C
8 · 8 C C C C

10 · 10 C S S S

W
al
l

5 · 5 C C C C
8 · 8 C C C S

10 · 10 S S S S

20
%

R
at
io
.

N
o
W
al
l 5 · 5 C C C C

8 · 8 C C S W
10 · 10 C S S S

W
al
l

5 · 5 C C C C
8 · 8 C C W C

10 · 10 S S S S

Tables 3 and 4 show the usefulness of our ap-
proach even more than in the case of Gaussian noise.
Although Table 4 shows that our approach was able to
solve the problem in many cases in which the classical
Q-learning could not find a correct policy, it is remark-
able that our approach tended to stagnation when the
size of the Gridworld was large (especially, 10 × 10).
It might be due to two reasons: 1) the incapacity of
the algorithm to eliminate the wrong knowledge ac-
quired in the first episodes of the learning because of
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the noise; and 2) the small variations in the filtered
noise signals used by the RL system. It should be em-
phasized again that there were not relevant differences
between Gridworlds with or without walls; it suggests
the use of more complex walls in future Gridworlds in
order to test the capabilities of our approach in a more
complex scenario. The same can be applied to the ap-
pearance probabilities (higher ratios may show more
differences, and hence, more interesting conclusions).

5 Conclusions

In this work, we have analyzed the addition of a noise
signal to the reinforcement signal in RL systems. This
noise stands for the uncertainty that may appear in
some real problems.

Results have shown that the classical RL ap-
proach does not work in this scenario. We have pro-
posed to filter the reinforcement signal as a simple
way to eliminate the influence of the noise, thus solv-
ing the problem. In particular, one of the most simple
filters (MA) has been used. Results have shown that
this approach makes the RL system more robust, since
it can find a correct policy in the majority of case stud-
ies.

This work is a first approach to solve RL prob-
lems in noisy environments. It is based on Digital
Signal Processing. Future work will be devoted to the
study of other kind of filters in order to remove the
noise from the reinforcement signal.
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