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Abstract: - Multivariate quality control charts show some advantages to monitor several variables in comparison 
with the simultaneous use of univariate charts. Nevertheless, there are some disadvantages when multivariate 
schemes are employed. The main problem is how to interpret the out-of-control signal of a multivariate chart. 
For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it 
must be accepted that there is a shift in the vector, but no indication is given about the variables that have 
produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the 
mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this 
chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and 
the percentage of correct classifications is studied for different cases. The utilization of this neural network in the 
industry is very easy, thanks to the developed software. 
  

Key-Words: - Multivariate quality control. Artificial Intelligence. Neural Networks. Computer Applications. 
 

1   Introduction 
It is well known that the statistical process control 
(SPC) consists of checking whether the productive 
process remains in an in-control state, i.e, it is tested 
if the monitored variable(s) keep the same statistical 
distribution. In the case that only one variable is 
monitored, and accepting that the variable is 
distributed according to a Normal with mean 0m and 

standard deviation 0σ , 0 0( , )N m σ , we only have to 

control that the mean is 0m  and that the standard 

deviation is 0σ .  For that purpose a control chart is 

employed to monitor possible shifts in the mean 

(possible charts are X , EWMA, CUSUM, etc.) and 
another chart to monitor possible shifts in the 
standard deviation (charts R, S, S2, etc.).  

However, it is very frequent to control 
several quality characteristics in the same product or 
productive process. In this case, it is assumed that the 
joint statistical distribution of the p variables is p-
multivariate Normal, with in-control mean vector   

0000μμμμ
 and with in-control covariance matrix 

0000
ΣΣΣΣ .  The 

multivariate equivalent to the   Shewhart’s chart is the 
Hotelling’s T2 control chart. The statistic T2 is the 

statistics of the UMP test to check the null hypothesis   

0 :H =µ µµ µµ µµ µ
0000

 versus the alternative hypothesis 

1 0:H ≠µ µµ µµ µµ µ . Therefore, this chart controls 

simultaneously the p means of the p variables. The 
Hotelling’s control chart consists of plotting the 
values of the statistic 

12
i i 0 i 00

T ( ) ( )n
−

′= − −∑X µ X µ , where iX  is the 

sample mean vector, 0ΣΣΣΣ  is the covariance matrix, and 

n is the sample size. On the other side, if it is decided 
to apply an univariate control to the p variables, p 

control charts must be designed, for example p X  or 
EWMA control charts.  

To improve efficiency in the case of small 
changes in the process, univariate EWMA and 
multivariate EWMA (MEWMA) control charts were 
developed (Lowry, Woodall, Champ and Rigdon [1] 
and Prabhu and Runger [2]). Their advantage is that 
they take into account the present and past 
information of the process. Therefore, they are more 

efficient to detect small changes than X   and 
Hotelling's T2 control charts. 
 
 



However, the main disadvantage when a 
multivariate control chart is employed is the 
interpretation of the out-of-control signal. 
Multivariate quality control charts do not indicate the 
variable or variables that have shifted, i.e, they only 
show that there is a problem, but they are not 
showing where. In this work neural networks will be 
developed, classifying the monitored variables in the 
groups Shift (variable has shifted) and No-Shift 
(variable has not shifted).  
 

 

2   MEWMA Control Chart 
 
2.1 EWMA Control charts 
EWMA (Exponentially Weighted Moving-Average) 
control charts were introduced by Roberts [3] as an 
alternative to Shewhart control charts for the 
detection of small shifts in the process. However, the 
Shewhart’s control chart only takes into account the 
present information of the process and does not detect 
quickly changes in the mean smaller than 2 . EWMA 
control charts take into account present and past 
information and therefore they are more efficient 
(fast) in detecting small shifts (Montgomery [4]). A 
widely used measurement of the efficiency of a 
process statistical control method is the ARL 
(Average Run Length). The ARL is the average 
number of samples to take (points in the chart) until 
an out-of-control-signal appears. 

In the case of EWMA, the statistical data to 
chart Zi,  to be compared with control limits at instant 
i, is obtained as a weighted average value according 

to parameter r between the observed value  iX   and 

the smoothed value Zi-1 , following expression: 

1)1( −−+= iii ZrXrZ    

If the quality variable to control is distributed 
according to ),( 00 σµN , the process is under 

control and the observations are independent, the 
control limits of the EWMA control chart are 
calculated with the approximate expression UCL = 

0µ  + L•
r

r
n

−2
·0σ  , LCL = 0µ  - 

L•
r

r
n

−2
·0σ  , where L and r are selected to 

get a given in-control ARL  and n is the size of the 
subgroup. If we want to obtain an in-control ARL of  
370 then infinite combinations of r and L can produce 
this in-control ARL, for example  r = 0.25 and L = 
2.898.  
 

2.2 MEWMA Control charts 
The first reference on multivariate EWMA 
(MEWMA) control charts corresponds to Lowry, 
Woodall, Champ and Rigdon [1] who define 
MEWMA as an extension of the univariate EWMA. 
Hotelling's T2 multivariate control chart only takes 
into account current process data, whereas MEWMA 
chart also includes past data, thereby it being more 
powerful to detect small changes in the process.  

Univariate systems only controlled one 
quality variable or characteristic. In multivariate 
systems a set of p interrelated variables will be 

controlled. In this latter case 1X , 2X ..., are run length 

vectors p which represent the sampling average 

values of the process. Let random vectors 
i

X  be 

independent and equally distributed following a p-
variate Normal variable of vector  µµµµ  and covariance 

matrix ΣΣΣΣ , 
i

X   iid ( , )pN≈ µ Σµ Σµ Σµ Σ . The process will be 

under control if =µµµµ
0000μμμμ

 and out of control in the 

opposite case. 
 
Vector 

i
Z  is defined as 

(1 )r r= + −
i i

Z X
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 ,     1≥i  

the starting vector being =
0 00 00 00 0ZZZZ μμμμ

 since the process 

is under control ( )E =
i

Z
0000μμμμ

  and covariance matrix 

of  is 
i

Z is 
iiiiZZZZ∑∑∑∑

 .  
i

X   is the vector of the sampling 

data and r is a scalar value between 0 and 1. If r =1 
we will obtain Hotelling's T2 control chart. The 
statistical data charted, Q , is defined as 

   'Q = i iZ
iiii
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where 
iiii
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 is the inverse of the variance-covariance 

matrix of 
i

Z . The covariance matrix of   is expressed 

by: 
2ir  1 ( 1 r )
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One measurement of vector shift (or distance 
between two vectors) used in multivariate analysis is 
Mahalanobis’ distance. In our case, the distance 
between the original mean vector and the new mean 

vector is  ' 1( ) ( )d −= − −∑∑∑∑
i 0 i 0i 0 i 0i 0 i 0i 0 i 0μ μ μ μμ μ μ μμ μ μ μμ μ μ μ

. The ARL 

performance of the MEWMA chart depends only on 
the noncentrality parameter  λ = nd 2, where n is 
sample size (Lowry, Woodall, Champ and Rigdon [1]  
and Lowry and Montgomery [5]). 
 



3   The Problem of How to interpret the 

Out-of-control Signal 
The interpretation of the out-of-control signal of the 
multivariate control charts is not an easy task. The 
sample sizes habitually employed in SPC are small, 
so the sample statistical information is scarce. On the 
other hand, it is desired that the employed method 
detects correctly the variables that have shifted from 
the set of p monitored variables. If, for example, three 
variables are monitored, and the first and the third 
variable have shifted, we only accept as a correct 
solution the prediction Shift / No-Shift/ Shift. 

All the research done for the interpretation of 
the out-of-control signal can be grouped in three 
categories: graphical methods, analytical methods 
and the use of neural networks. The graphical 
methods consist of drawing some type of chart that 
helps the user in deciding the variables that have 
shifted. For example, Blazek, Novic and Scott [6], 
Subrmanyam and Houshmand [7] Fuchs and 
Benjamin [8] Iglewicz and Hoaglin [9] and Atienza, 
Ching and Wah [10]. These graphical methods 
present several drawbacks. Their operation is tedious 
and cumbersome, because of their own graphical 
nature. Nevertheless, the main problem is that a 
graphical approach requires the user to interpret the 
results. This means that it is a complex task to 
measure their effectiveness, in an objective way.   

The analytical methods develop a statistical 
procedure that tries to predict the variables that have 
shifted. In this group we highlight the methods 
developed by Doganaksoy, Faltin and Tucker [11], 
and Runger, Alt and Montgomery [12]. Special 
interest has the procedure developed by Mason, 
Tracy and Young [13, 14] develop a method (MTY 
method) that analyzes the factors resulting from the 
decomposition of the T2 statistic, whose value 
indicates a probable out-of-control situation. The 
MTY method consists of decomposing the T2 value 
into independent components, each of which reflects 
the contribution of an individual variable. Aparisi, 
Avendaño and Sanz [15] show that the percentage of 
correct classifications of the MTY method is 
generally worse in comparison with the use of a 
neural network. 
 
 

4   Neural Networks for Interpreting 

MEWMA Out-of-control Signals. 
Known the good results obtained in Aparisi, 
Avendaño and Sanz [16] in the interpretation of the 
out-of-control signal of Hotelling’s T2 control chart, 
it was decided to apply the same philosophy to the 
MEWMA chart. The MEWMA control chart will be 

responsible of detecting the out-of-control state and, 
when this charts detects a shift in the mean vector, the 
neural network will classify the variables in the 
groups Shift / No-Shift , as shown in Figure 1. 

 

Fig. 1. Use of the Neural Network. 

4.1 Input and Ouuput Nodes 
Two neural networks have been designed: one that 
interprets the out-of-control signal of the MEWMA 
chart when two variables are monitored (p = 2) and 
another network that interprets the signal when three 
variables are controlled (p =3). The utilized neural 
networks are of backpropagation type, i.e., we have 
employed neural networks that learnt from correct 
solved examples. In this section it is explained the 
procedure followed to simulate the cases employed to 
train the neural networks. 
  In the case of the MEWMA chart for two 
variables the information to be inputted to the neural 
network is the following: statistic Q, sample means of 

the two variables (standardized), 1 2,X X ; sample 

size, n; correlation coefficient between the variables, 
ρ; and smoothing constant, r. When three variables 
are monitored the inputs to the neural network are: 
statistic Q; sample means of the three variables 

(standardized), 1 2 3, ,X X X ; sample size, n; 

correlation coefficient among the variables, 

1,2 1,3 2,3, ,ρ ρ ρ ; and smoothing constant, r. These 

inputs have been selected in order to obtain the 
maximum information from the sample that has 
produced the out-of-control signal. The correlation 
coefficients and the smoothing constant inputs are 
poblational values. That means that the user has to 
input the values when the process was in an in-
control state.  

Employing the above inputs, the proposed 
neural networks can be utilized in whatever 
productive process, because the standardized sample 
means are measuring the deviation from the target 
mean of each variable in sigma units, so the user only 
has to standardized the sample means and the neural 
network can be applied to her/his process. 

The outputs of the neural network consist of 
a node for each variable to be monitored. An output 
equals to 1 in one node shows that the network 
predicts that this variable have shifted in the process, 
whilst an output equals to 0 means that this variables 
have not shifted. Therefore, the neural network for 



the MEWMA chart when two variables are monitored 
has two output neurons, and the neural network for 
the case of three variables has three output neurons. 
Figure 2 shows the architecture of the neural network 
for three variables. 

 

 

 
Fig 2. Architecture of the network for three variables. 

 

4.2 Training of the Neural Networks. 
The performance of a backpropagation neural 
network depends on the quality of the training set 
employed. Therefore, a carefully design of the 
training cases is a must. The procedure followed to 
obtain the cases to train the neural network consists 
of the simulation of a productive process. For 
example, let us follow the case were two variables are 
monitored. The MEWMA control chart is simulated, 
i. e., random samples from a bivariate normal 
distribution are obtained and the MEWMA statistic is 
computed. As it was commented before, the neural 
network has the input normalized, to be useful for 
whatever productive process. Therefore, the means of 
the variables are set to 0 and the standard deviation is 
set to 1. On the other hand, a sample size and a 
correlation coefficient have to be specified in the 
simulation.  
 The following cases were taking into account in 
order to achieve a complete set of possible shifts:  

• Sample size, n: 1, 3, 5, and 7. 
• Correlation coefficient, ρ: 0.2, 0.5, 0.7, 

and 0.9. 
• Size of the shift, d (Mahalanobis’ 

distance): 0.2, 0.6, 1.2 and 2. 
• Position of the shift: points A to H, see 

Figure 4. 
• Smoothing parameter, r: 0.1, 0.4, and 0.7. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 3. Different types of shifts for p = 3. 
 

There is no an exactly procedure to know 
what are the optimum number of hidden layers and 
neurons of these layers to optimize the performance 
of a neural network for solving a given problem. 
Therefore, different architectures were proved. We 
found that the following neural networks have the 
best performance of all the architectures tested: for 
two variables has a lay-out 6-8-10-2  and the network 
for three variables has the structure 9-10-12-3 (see 
Figure 2). 

For the case of three variables (p = 3) a 
similar procedure has been followed up in order to 
produce the training set, obtaining the cases varying 
the sample size, correlation coefficients, size of shift 
(Mahalanobis’ distance) and type of shift. The types 
of shifts studied have been obtained following a 
similar procedure to the bivariate case. The results are 
summarized as:  A = only one variable shifts; B = 
two out of the three variable shift; C = all the 
variables have shifted. 

The software QNET2000 has been utilized to 
train the neural networks. Following the common 
procedure for training the backpropagation networks, 
the training was stopped in the moment that it is 
evident that the network is not learning any longer, 
because it begins to memorize the results. 

 

5 Percentage of Correct Classifications. 
The percentage of correct classifications for  p = 2 is 
67.2% and 54.0% for p = 3.  Table 1 shows the 
percentage of correct classifications as a function of 
sample size employed in the MEWMA control chart. 
The results indicate that as a sample size is larger it is 
easier to obtain a correct classification for the 
variables. It is logical, because larger statistical 
sample information is used. Therefore, the 
percentages varies from 52.4% and 39.3% for p = 2 
and p = 3, respectively, when n = 1, to 76.2% and 
63.2% for n = 7. 
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Simple size 
 n  

% correct 
classifications 

p = 2  

% correct 
classifications 

p = 3 

1  52.4 39.3 

3  66.4 53.7 

5  73.7 60.1 
7  76.2 63.2 

Table 1. Correct classifications as function of 
sample size. 

Table 2 shows the percentage of correct 
classification as a function of the type of shift shown 
on Figure 4. As it is possible to see, for the same 
problem that consists of classifying the variables in 
the groups Shift / No-Shift there is a large variability 
for the percentage as a function of type of shift. For 
example, points A and G correspond to the case of 
the two variables have shifted and the new out-of-
control mean vector distances the maximum possible 
from the previous in-control mean vector (Euclidean 
distance). In this case, the two values of sample mean 
to be input in the neural network when the MEWMA 
chart signals will tend to be very large. So for these 
cases it will be easy to determine that the two 
variables have shifted their means. The percentages 
for the points A and G are not identical (91.4% y 
90.7%, respectively) because the employed set to 
check the efficiency of the neural network is obtained 
by simulation. 

The lowest percentage of correct 
classifications corresponds to the points D and H 
(39.7% y 38.8%, respectively). Here we find a case 
where only one of the means has shifted, and the shift 
magnitude is small. Therefore, the values of   and   
that will be input to the network will tend to be both 
small, and in some cases very similar, making very 
difficult to obtain a correct classification of the 
variables in the groups Shift / No-Shift. A better 
percentage is obtained for the points C and F (47.4% 
and 46.9%, respectively), where also only one 
variable has shifted, but the shift is of a larger 
magnitude. 

Clearly the neural network detects better the 
shifts in the cases where both variables have shifted 
the means. The demonstration of this are the points B 
and E (78.9% and 79.4%, respectively) where the two 
means have shifted, buy in a small magnitude. This 
case seems to have a similar difficulty to the previous 
cases, but the neural network performs better now. 

Table 3 shows the percentage of correct 
classifications as a function of the type of shift when 
three variables are monitores. It is reminded that type 
of point A means that only one variable shifts, B 
means that two of the three variable shift and C 
means that all the variables have shifted. 

 
Type of Shift % of Correct 

Classifications  
A 91.4 
B 78.9 
C 47.4 
D 39.7 
E 79.4 
F 46.9 
G 90.7 
H 38.8 

Table 2. Correct classifications as function of 
type of shift (p = 2). 

Type of Shift % of Correct 
Classifications  

A 65.7 
B 55.8 
C 38.9 

Table 3. Correct classifications as function of 
type of shift (p = 3). 

  As it is possible to see, some cases are 
easier classified than others. Another time the neural 
network has better efficiency as the number of 
variables that really have shifted increases. Therefore, 
if all the variables have shifted the percentage of 
correct classifications is 65.7%. If two out of three 
variables have shifted the percentage is 55.8% and 
the efficiency is 38.9% if only one variable have 
shifted. The percentages shown on Tables 3 and 4 are 
similar to the obtained by Aparisi, Avendaño and 
Sanz (2006) for the Hotelling’s T2 control chart. 

Lastly, the percentage of correct 
classifications as a function of the smoothing 
parameter in shown on Table 5. The results show that 
the percentage is larger as the value of the smoothing 
parameter, r, increases. This behavior is logical, 
because as r increases the value of the statistic plot, 

Q, is more influenced by the sample means, iX  , 

used by the neural network to classify the variables. 
Smoothing 
parameter 

r 

% of Correct 
Classifications  

p = 2 

% of Correct 
Classifications 

p = 3 
0.1 59.2 47.6 
0.4 68.9 55.8 
0.7 71.1 57.8 

Table 4. Correct classification as function of smoothing 
parameter, r. 

 

6   Software an Example of Application 
One of the objectives of this work is that the final 
user can apply the neural network to interpret the 
signal of the MEWMA chart without being an expert 
in neural networks. Following this objective software 
for Windows has been developed. The user only has 
to input the values of the input nodes and the 
software shows the classification of the variables in 



the groups Shift / No-Shift. Figure 5 shows the output 
of this software, which is available from the authors 
upon request. 

Follows an example of application of this 
software. Let us assume that a productive process is 
being monitored. The following mean vector and 
covariance matrix describe the production when the 
process is in an in-control states: 

0 0

20 0.04 0.02 0.01

7 ; 0.02 0.02 0.011

4 0.01 0.011 0.01

µ
   
   = Σ =   
   
   

 

  A sample size of n = 3 is employed and the 
smoothing parameter is r = 0.2. The control limit of 
this chart is 10.597. A point exceeds the control limit 

with Q = 11.57. The sample means are: 1X  = 20.358, 

2 7.099X = ,  3X = 4.092. Figure 5 shows how the 

previous data has been input to the software. Please, 
notice that the sample means are standardized, to be 
able to use this software in whatever process. The 
software predicts that only the first variable has 
shifted. 

 
Figure 5. Software solving the example of application. 

 

7   Conclusion 
The interpretation of the out-of-control signal of the 
multivariate quality control charts is one of the main 
disadvantages in the application of these charts. In 
this work we have developed an interpretation based 
on the use of neural networks. We have developed a 
software for Windows of very easy use, with the 
objective that the final user in industry can apply this 
method directly. In this paper the percentage of 
correct classifications has been studied, obtaining 
similar results to the use of neural network for the 
Hotelling’s T2 control chart.  Since now the user of 
the MEWMA control chart has an easy tool that helps 
to take a decision when the MEWMA control chart 

detects an out-of-control state. On the other hand, 
researchers can develop alternative methods to 
interpret the out-of-control signal of the MEWMA 
chart and to compare the efficiency of these future 
methods against the neural networks shown here.   
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