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1   Introduction 
A boundary integral equations method represents one of the 
effective methods of research and solution of many applied 
problems and, among them, problems of elasticity theory. In 
particular, it concerns also to numerical solution of similar 
problems which in the given case consists in application of one 
or another approximate methods to solution of corresponding 
boundary integral equations. In the existing literature Fredholm 
integral equations are usually meant under such equations. 
      However, taking into account the character of dependence of 
kernels of such equations on the boundaries of the considered 
domains, calculating schemes founded on certain Cauchy type 
singular integral approximation, seem more effective in the case 
of arbitrarily given domains. On the base of such 
approximations, numerical solution of the initial problem leads 
to linear algebraic system, whose coefficients are sufficiently 
easily realizable even in the cases, when the boundary is not  
given by its exact equation (but graphically or as a table, which 
usually takes place in practice). On the other side, we note that 
foundation of the schemes of such kind is generally difficult and 
in different cases, individual research becomes necessary. 
 
 
2   Problem Formulation 
In the present paper, the mentioned question is considered for a 
concrete numerical solution scheme for some basic problems of 
plane elasticity theory in the case of finite simply connected 
domains. Here we will start from the known Sherman-Lauricella 
boundary integral equation (see [1], [2]), which can be written as 
follows (for definiteness, the first elasticity problem, according 
to the accepted in [1] terminology, is considered below): 
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(1)
Here  is a L boundary of the considered domain, representing a
closed contour on a complex variable plane (everywherz e
further we will mean that the contour belongs to a Liapunov
class and that the origin is inside),  is a(1) ( 2)( ) ( ) ( )t t iω ω ω= + t n
unknown function and 0 1 0 2 0( ) ( ) ( )f t f t if t= +  is a given function
(defined on  in a known way by a stress vector), L ϑ = 0( , )t tϑ =

0arg( )t t= − .  
       On the base of  transformations (see also [3])  
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we can write the initial system (1) in Cauchy type singular
integrals which will be meant further in (1). It is important to us,
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that the integration in these integrals is done with respect to 
complex variable  and at this it is not required to consider 
derivatives of the function 

t
0( , )t tϑ  (whose calculation 

complicates the realization of the numerical schemes in the case 
of arbitrarily given domains). In result, construction of 
practically convenient numerical schemes for solution of the 
given equation depends on possibility of construction of 
effective approximating processes for indicated integrals. 
 
 
3   Approximation of Integral Equations 
System (1) 
In this section we give an approximate scheme for numerical 
solution of system (1), based on certain approximation of 
singular integrals in (2), (3) (and regular integral contained in 
(1)).     
      As in [4], we introduce a system of knots { }

0
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contour  partitioning it into arcs L 1σ στ τ + , 0 1nσ≤ ≤ − . In the 
proofs cited here an equal partitioning of the contour is meant 
(however, according to the remark in [5] basic results remain 
valid under somewhat more general partitioning). Naturally, 
under 1σ στ τ +  we mean the least arc of  with endpoints L στ , 1στ +  
lying in the positive direction on . We apply quadrature 
formulas from [4] to singular integrals in (2), (3) from [4]:                    
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(similarly, for corresponding integrals in connection of the 
second equation of the system (1)), where  ( ) 0( ; )n qL tν ω ( 1;2)q =  
represents a linear interpolation Lagrange polynomial for the 
functions ( )qω  by points ντ , 1ντ + . It is clear that constructed in 
this way expressions make sense also at the points , coincided 

with the knots 

0t

{ }jτ and by that they are defined on the whole
contour . L
   However it should be noted that at passing of the parameter 
over the endpoints 

0t

ντ , 1ντ + , the corresponding sums (operator-
functions) may have finite breaks. Meanwhile from the
viewpoint of foundation of numerical schemes, constructed in
similar way, continuity of approximating operator-functions on
the whole contour is essential for considered integral equations.
It can be shown that approximation of singular integrals can be
constructed on the basis of simple modification of indicated
above approximating sums. Concretely for the sums involved in
(4), it may be done  applying a linear interpolating operator to
the latter with knots on each arc 1ν ντ τ +  ( 1,2,..., ;nν =  1 1ντ τ+ = ).
We  obtain a piece-wise continuous operator-function, defined
on the entire ,  continuous on it and, moreover, satisfying on iL t
to the Holder condition (with index 1).  
      At this we note that an accuracy estimate of the quadrature
formulas constructed in the indicated above way for the
considered singular integrals can be established similarly to that
in [4] (which further was used in [5]). In this connection it
should be noted that in [5] a Dirichlet problem, which can be
reduced to a boundary integral equation of the form  
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is considered (where unlike (1), the singular integral
approximation rate depends only on differential properties of the
unknown function ( )tϕ  and on the chosen quadrature formula,
and in some cases it may appear rather high). 
     In the considered case it must be taken into account that
because of presence of the functions sin 2ϑ , cos 2ϑ in the
singular integrals, the smoothness of their densities  is
essentially determined by the smoothness of the contour . BL y
that, if the vector-function belongs e.g. to th( (1) (2)ω ω ω= ) e
Holder class ( )H α  ( 0 1α< ≤ ) on , then under the accepteL d
above assumption that  belongs to the Lyapunov class, we caL n
assert a convergence of the indicated quadrature formulas with
the rate . For sufficiently smooth functions ( lnO n nα− ) ω a

convergence rate ( )1 lnO n nδ+  can be reached, where δ

(0 1)δ< ≤  is determined via the Lyapunov index. More exact
estimates for sufficiently smooth functions ω  and contours 
may be obtained with the help of more accurate quadratur

L
e

formulas indicated in [4].  
    As for regular integral in (1), ordinary quadrature formulas of
appropriate accuracy may be applied to them. In particular, in
the given case we put 
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 where pσ  are mentioned in (4) coefficients. According to
known estimation methods we can see that the error of this
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formula in the class ( )H α  is (O n )α− . In cases of sufficiently 

smooth functions ω  the convergence rate can be ( )1O n δ− +  

(under the accepted above assumptions). For completeness here 
we remember that for sufficiently smooth integrand functions 
this formula guarantees the rate of convergence  (even in 

cases of arbitrarily piece-wise smooth contours ). 
( 2O n− )

L
 
 
4   On Investigation of a Numerical Scheme 
In spite of the fact that the singular integral approximation 
method leads us to easily realizable schemes, as it was noted 
above, in general case it does not guarantee the solvability of the 
approximating equations constructed on such base. Below some 
considerations in this direction are carried out.   
  Assuming as earlier 0 β δ< <  we denote by H β  a space of 
vector-functions (1) (2)( , )ω ω  satisfying on  to the Holder 
condition with the index 

L
β  with usual definition of a norm in 

this space. By  we denote the operator generated in the given 
system by integrals with singular kernels  and by  ─ 
the operator corresponding to the regular part. Similarly by  
and  we denote operators approximating  and Q  
respectively. Using these notations, we represent the initial and 
approximating systems in the following forms: 
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where  is an unknown approximate solution. A (1) ( 2)( ,n n nω ω ω= )
proof of its existence (usually for sufficiently big ) is an 
essential part of foundation of the scheme. At this the known 
fact ([1], see also [2]) that equation (5) is uniquely solvable is 
used. Below, using approaches formulated in [5], we present 
shortly some fragments of the proof, that starting from certain  
the corresponding homogeneous equation (everywhere below 
we keep the same notation 

n

n

nω  for its solution)  
( )( )0 0n nK tω =                            (7) 

has only trivial solution.  
    Proceeding to presentation, firstly we note that mentioned 
above error estimates of the considered integrals, evidently, are 
also valid for the solution nω  of the equation (6). On the base of 
these estimates we can write 
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    In the corresponding proofs it is essential that for the solution 
nω  of the equation (7) the norm n Hβ

ω  can be estimated by 

( )n nh β ω . Establishment of such relation is based on direct 
estimations of the sums involved in the expression of the 

operator-function . At first, starting from equation (7), we
will express the values of the solution 
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by these sums. At this, taking into account the fact that the part
0( )n nS tω  of the sum, related to the approximation of singular

integrals, contains the function nω  only via its difference
quotients, it can be estimated directly by  ( )n nh β ω .  
    In order to obtain such estimates, we use essentially, an
approach from [5], noting at this, that in this case the
corresponding sums are partitioned (for 0 , jt ντ τ=  respectively)
into sums, one of which contains differences 
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the same equation (7) we get 
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( , 1,2,..., )j nν = , 
where ( )1;2
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= ∈

= . Using this estimate it may be

shown (see [5]) that in the previous estimate the knots can be
changed by arbitrary points  1 2,t t L∈ 1 2(t t )≠ . In result, taking
into account the presence of the operator nH  in equation (7),
under accepted by us assumptions we come to a certain estimate,
which may be written in the following form 
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Using the known fact (see [1]), that under the mentioned above
conditions on , the operator  is continuously reversiL K ble in
the space  (it is reversible in the space C Hβ too), and on the
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base of equation (7) and relation (10) it is possible to obtain the 
estimate 
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From estimates (9), (11) it follows that the mentioned above 
statement about solution nω  of equation (7) will be true if we 
prove that all  for sufficiently big . The proof of 
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In this connection now we will consider in detail cases of such 
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   Using this presentation in the sums and noting that the main
parts of the right hand sides in formulas (15) are  imaginary
values (and (1)nω , ( 2)nω  are real functions), we have (similarly to
[5]) that  
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    As for the estimation of  2 2ν λ+Σ − Σν , it essentially settles on
the same principles which were used in [5] while estimating
analogous sums. However, in the given case this brings to
significantly more cumbersome transformations, conditioned by
presence in the considered sums of expressions, containing
values of the functions 0sin 2 ( , )t tϑ , 0cos2 ( , )t tϑ . Execution of
the corresponding considerations along with the previous results
and equality (13), leads us to the following asymptotic relations 
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Imposing on the sequence { }nj  additional requests (taking into
account δ β> ) 

{ }2ln 0nj nβ− → , { } 0nn jδ δ β− + →   (n →∞)
and recalling (12), we can see that the relation ( ) 0n nh β ω = it
valid for sufficiently big n . 
  From the proved above (as in [5]) it follows that the operator

nK  is continuously reversible and the norms 1
n H

K
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(n →∞)  not faster that . From this the estimate anln n d
convergence of the scheme follow. 
   As is known, the main goal of solution of problems of the
elasticity theory is definition of values of stress and
displacement at points of the domain D . In the given case, after
having found the solution ( )n tω  ( t ) to the equation (6),
approximate meanings of the mentioned values can be
determined by the function 

L∈

( )n tω  applying certain formulas
known in the literature as Kolosov-Muskhelishvili complex
potentials. This finally is connected with calculation of the
Cauchy type integrals (see [1]) with kernel 1( )t z −− . Densities
of such integrals (potentials) depend in known way on solution
of corresponding boundary integral equations (in the given case,
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to indices ν σ±  (1 2 )njσ≤ ≤  and 2νΣ , 2ν λ+Σ   contain the rest. 
Concerning the estimation of the sum 1ν λ+Σ - 1νΣ  we note that 
for 1 2 njσ≤ ≤  an asymptotic representation, similar to that 
indicated in [5], is true (recalling that the contour  belongs to 
the Lyapunov class).  

L
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under the approximate solution, the function ( )n tω  is meant). 
According to this and [1] the corresponding potentials may be 
represented as  
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Calculation of these integrals and their derivatives is required. 
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( 1μ μτ τ τ +∈ , 0,1,..., 1nμ = − )                 (16) 
 
(with properly chosen branch of the logarithmic function) where 

jp  are the above indicated coefficients, ( ; )Lμ ϕ τ  is a Lagrange 
piece-wise linear interpolation polynomial constructed on the 
arcs 1μ μτ τ + , using the knots μτ , 1μτ +  ( 0,1,..., 1)nμ =

    A quadrature formula similar to (16) for Cauchy type integral
with a kernel 2( )t z −−  is also constructed in [6] on the same
principles. 
   We recall that for the sake of definiteness the first basic

problem of elasticity theory was considered here, though the
corresponding scheme can be applied to the second basic
problem too. Formally such scheme can be used also for a mixed
problem of elasticity theory, though in the  given case the
foundation of the scheme turns out to be difficult (due to
properties of the right hand side of the corresponding integral
equation). Note that everywhere above finite (simply connected)
domains were meant, though corresponding considerations for
such infinite domains do not differ essentially from the previous
ones. As for multiply connected domains, difficulties appeared
in this case mainly have technical character. 
 
5   Conclusion 
From the above said it is clear that possibility of foundation of
such schemes depends essentially on individual properties of
operators and approaches to their investigation. It is known, that
unlike Fredholm integral equations, in approximate schemes
based on approximation of singular integrals, the closeness of
the initial and approximating operators is not always a reason to
assert even solvability of approximating equations while
arbitrarily increasing the number of partitions of the
corresponding contours. It was already mentioned partially in
the beginning.  
    Note that a bit different scheme for numerical solution of the
first and second basic problems (and some boundary problems)
was developed earlier by one of the authors (with co-authors),
and a package of applied programs ([7]) was made on its base.
In the mentioned work the corresponding boundary integral
equation was considered in the form (equivalent to that
considered here): 
 

—

0
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ϕ ωω
π π
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π π

⎛ ⎞
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∫ ∫ =  

0( )f t=                              (17)
(the first basic problem), where 

0
0

0

( , ) dt t th t t
dt t t

−
= −

−
  ,  0( )t t≠ 0 0( , ) 0h t t ≡ . 

    In the scheme from [7] for approximate solution to equation
(17)  certain quadrature formulas (similar to indicated in [4])
were used for integrals with kernels 1

0( )t t −− (and ordinary
quadrature formulas for corresponding regular integrals). At this,
approximate values of  were found with the help o0( , )h t t f
numerical differentiation formulas, selected in proper way.
Constructed in the indicated way approximate scheme was used
in practical calculations. However, in spite of rather good
approximation of equation (17) by this scheme, foundation of
the corresponding numerical process did not appear justifiable.

− . At this 
under the variable parameter τ  one of nearest to  on the 
contour  is meant while tending  to .   

z
L z L
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We also note that in the given case the calculation of complex 
potentials (and thus, calculation of stress and displacement 
components) was done on the base of approximation of their 
densities (and their derivatives) by spline type expressions. 
Constructed on such basis formulas ensure rather good 
approximation at the points located more or less far from the 
boundary of the domain. However, unlike the formulas from [6], 
they stop being effective near the boundary.  
    We note also, that having in view practical purpose of the 
elaboration mentioned in [7], more accurate quadrature formulas 
were used for singular integrals (and similarly for regular 
integrals). Such formulas may be used without trouble in 
approaches offered in this paper. The indicated above 
approximation formulas were used here only from the viewpoint 
of simplicity of the corresponding considerations.  
    In this connection it may be shown that applying certain 
transformations, the accuracy of such (offered here) schemes 
may be increased. In order to make it clear we remember that 
approximation of singular (and regular) integrals was based on 
approximation of the values involved in the products of the 
unknown functions (1) ( )tω , ( 2) ( )tω  and 0sin 2 ( , )t tϑ , 

0cos2 ( , )t tϑ  (and also in the product of ( )tω  and  in regular 
integral). It is clear that, in general, differential properties of 
these products essentially depend on the same properties of the 
contour . By that the accuracy rate of such approximation is 
substantively determined by these properties (note that in the 
scheme, mentioned in [7], the similar circumstance is connected 
with approximation of the integral 

2t−

L

0

0 0

( )

L

t tdt t dt
dt t t t t

ϕ⎛ ⎞−
−⎜ ⎟− −⎝ ⎠

∫ , 

involved in the corresponding equation of both the first and the 
second basic problems).  
      Below we will stop shortly on a possibility of modification 
of the considered here scheme, where the mentioned 
circumstance is someway accounted. This consists in simple 
modification of the approximate formulas for singular and 
regular integrals used here. In particular, concerning the singular 
integrals in [7] this means an approximation only of initial 
functions (1) ( )tω , (2) ( )tω  by method, indicated in [4] 

(considering by that the functions 0sin 2 ( , )t tϑ , 0cos2 ( , )t tϑ  as 
weights). Besides we will approximate the regular integral also 
by approximation of the same unknown function (with 
corresponding weights ). In result we come to approximate 
equations system, which differs from the previous one in 
corresponding coefficients (subject to further calculations). 

2t−

Namely, in the coefficients of the part, corresponding to singular 
integrals, expressions of type 
  

1

(1)
0

1 ( )sin 2 ( , )k kp l t t t d
i

σ σ

σ σ
τ τ

ϑ
π

+

= ∫ t , 

 

1

(2)
0

1 ( )cos2 ( , )k kp l t t t dt
i

σ σ

σ σ
τ τ

ϑ
π

+

= ∫  

 
will appear, where, as earlier,  ( )kl tσ ( 1;2k )= denote the
coefficients of the Lagrange piece-wise interpolation polynomial
(constructed on the arcs 1σ στ τ + ). For approximate calculation of
such integrals each arc 1σ στ τ +  is partitioned by points , ,...,

 (
1t 2t

Nt N n> ) into equal arcs 1t tμ μ+ ∈ 1σ στ τ +  ( 1,2,..., 1Nμ = − )
for considered values of σ .  Approximating the functions

0sin 2 ( , )t tϑ , 0cos2 ( , )t tϑ  in these integrals by the Lagrange
piece-wise interpolation polynomial, constructed on the arcs

1t tμ μ+ , the approximate calculation of (1)
kpσ , (2)

kpσ is reduced to

calculation of integrals (on arcs 1t tμ μ+ ) from polynomials,
representing products of coefficients, constructed by two
considered knots systems. We can do the similar considerations
for regular integrals. 
    It is clear that if N  is sufficiently big (much bigger than ),
then the error of final approximation of system (1) is determine

n
d

mainly by error of approximation of the unknown function
( )tω . According to that and said above, in some (possible) cases

the accuracy of such transformed schemes may be higher. 
   Finally, we note that generally, application of the singular
integral approximation method appears rather effective to some
other problems of complex variables functions theory too,
namely, to problems of conformal mapping of domains. In this
connection, we can note e.g. [8], [9]. 
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