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Abstract: A new type of timed alternating finite automata (TAFA) called omega deterministic timed alternating
finite automata ( � -DTAFA) is described. DTAFA and � -DTAFA are synchronous and parallel computational
models used for modeling real-time constraints computations and developing software systems. These models are
extended with a finite set of mutually exclusive real-valued clocks on events which trigger the state transitions
of the automaton. We show that � -DTAFA are closed under all Boolean operations, including some of the most
important operators. We then consider some well-known automata-theoretic properties of TAFA, and investigate
those properties in the case of � -DTAFA. Alternation, timing and determinism add perfect features to automata
expressiveness, parallelism and succinctness, which have practical applications in software and real-time systems.
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1 Introduction

Traditional finite state automata are untimed or asyn-
chronous models of computation in which only the
ordering of events, not the time at which events oc-
cur, would affect the result of a computation. Timed
finite automata (TFA) have become a powerful canon-
ical model for describing timed behaviors and an ef-
fective tool for modeling and verifying real-time com-
putations. Timed automata received their first semi-
nal treatment in [1], since then much work has been
done in this area of research. In addition, a major di-
rection that has been particularly successful is the ap-
plication of the timed automata theoretic approach in
modeling real-time systems and checking problems,
and hence, have applications in the software engineer-
ing processes. Several models based on automata the-
ory have already been implemented as an effective
verification and validation tools for real-time and em-
bedded systems, for example, research tools such as
UPPAAL [14], and KRONOS [13]. Several papers in
the literature have adopted finite state machines as the
main formalism to model the behavior of web service
system. For example, Boolean web-service automata
for distributed web services have been introduced in
[5] as a parallel model for interaction and interoper-
ability between applications as well as their composi-
tions.

Alternating finite automata (AFA) are a natu-
ral generalization of nondeterminism automata which

�
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provide a succinct representation for regular lan-
guages, but are double-exponentially more succinct
than deterministic finite automata (DFA). Indepen-
dently, AFA were introduced in [3] and [4] under the
name of Boolean automata. Since then most of the
subsequent research focused on various types of alter-
nating machines to complexity classes, see for exam-
ple, [8, 9, 10, 12].

Timed alternating finite automata (TAFA) – a
class of alternating finite automata augmented with a
finite set of real-valued clocks (i.e., timers) were first
considered in [6]. Intuitively, a timed alternating finite
automaton can be viewed as a “timed parallel finite
automaton”. Multiple clocks TAFA would be partic-
ularly useful in modeling a system that has many de-
pendency relationship since several clocks are avail-
able that can be reset during any transition. This,
combined with the fact that timing constraints can in-
volve multiple clocks, allows complex dependent re-
lationships to be constructed that cannot similarly be
modeled by TFA since TFA do not have the power of
parallelism and AFA do not have the functionality of
clocks. Despite being very expressive for describing
timed behaviors and modeling real-time systems, TFA
and TAFA are neither determinizable nor closed under
the complementation, and timed regular expressions
have no negation operator [6].

In [7] and along the lines of even-clock automata
[2], it has been shown that every timed AFA can be
determinized since at all times during the run of an au-
tomaton, the value of each clock is determined solely
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by the input sequence and doesn’t depend on nonde-
terminism. The clocks are divided into mutually ex-
clusive sets and a predefined association between the
clocks and symbols of the input alphabet define a sub-
class of timed AFA models called omega determin-
istic timed alternating finite automata ( � -DTAFA).
These automata could be comparable to event-clock
automata [2] and DTAFA [7]. The main complement-
property, which fails for arbitrary timed AFA, hold for
all deterministic TAFA (DTAFA). That is, � -DTAFA
are closed under all operations, in particular, for every

� -DTAFA we can construct an � -DTAFA that defines
the complement of a timed language.

This paper is organized as follows. Section 2 is
devoted to preliminaries. Section 3 introduces omega
deterministic timed alternating finite automata ( � -
DTAFA) and deterministic timed alternating finite au-
tomata (DTAFA), two variants of timed AFA extended
with a finite set of restricted real-valued clocks. Sec-
tion 4 shows the transformation of DTAFA and � -
DTAFA. Both types of automata are equivalent in lan-
guage recognition to Alur-Dull timed automata [1].
In section 5, we investigate some automata-theoretic
properties of � -DTAFA. Finally, in Section 6 we draw
some concluding remarks.

2 Preliminaries

We denote by ����� the set of all non-negative reals
including 0. The cardinality of a finite set � is � ��� .
An alphabet � is a finite, nonempty set whose ele-
ments are called symbols or letters. Any subset of � �
is called a language over � . A timed word, 	 over
� is a finite sequence 
���
�������������
���������� ��!"!"!#
���$%���&$'�
where the �)($�* are symbols of � and the ��($+* are in � ���
such that for all ,.-0/ , ��$213�&$546� . The first element,
��($ * , of each pair are the input symbols, and the sec-
ond element, � ($ * , are the time elapsed with respect to
the � ($ * since the previous symbol reading. The time �"�
can be thought of representing the amount of time that
has elapsed since the starting of time. We assume that
���.�87 . Thus, ���9!"!"!��&$ is a finite monotonically non-
decreasing time sequence of � ��� . A timed trace (run)
is a finite sequence 
�������������
����������:��!"!"!#
���$����&$;� . The
length of a word 	 , denoted by � 	<� , is the total num-
ber of symbols in 	 , where � is a finite sequence of
symbols of � , and � is a finite monotonically increas-
ing sequence of � ��� and both have the same length.
The time language 
+�8=>�?��� � � is the set of all timed
words over � where @ denotes the empty timed word.
Timed words are defined over the combination of the
monoid 
+�>��A���@�� and the time monoid 
B� ��� ��CD��7E� ,
where “ A ” is the classical concatenation operator (we
write ab rather than FGAGH for the concatenation). For

any language IKJL� � , IM�N� �"O#I , is the comple-
ment of I with respect to � � . For languages IQP and
ISR over � , the union and intersection are denoted by
ITPVU>ISR and ITPVWXIYR , respectively. For more details,
see [1, 11].

3 Omega Deterministic Timed Alter-
nating Finite Automata

In this section we first define a variant of timed
alternating finite automata called deterministic timed
alternating finite automata (DTAFA). Then, we
extend DTAFA with a set of Boolean operators which
yields the definition of Omega deterministic timed
alternating finite automata ( � -DTAFA).

Let Z be a set of clock variables, a clock con-
straint [ over Z on a given input symbol �]\^� can
be generated by the following grammar:

[`_a�`bdcfe.�gbh1fe.�#eGcibj��ek1ibj�g[S��lm[n�o�#[S��pm[n�
where b is any clock in Z and eq\r� ��� such that
es-t7 . The operators l and p stands for the logical-
or and logical-and, respectively.
A clock interpretation u for Z is a mapping from Z
to � ��� (i.e., u assigns to each clock bv\wZ the value
ux
Bby��� . A clock interpretation represents the values of
all clocks in Z at a given snapshot in time.

There are some cases where we don’t need ex-
plicitly to state a constraint if it spans all non-negative
reals (i.e., bzc{ekl^e|1}b ). Since all clock interpre-
tations for all b can never be negative, the constraint
[f�q7<cibx�xp<7~cfb��6pX�"�"�"p~7~cibm� ����p�[ is implied
for all b $ \zZ where />c{,�c���Zd� . The assignment
statement b�_a��7 implies that the clock is reset (the
symbol ”:=” is the assignment operator). However,
the comparison statement bj�{7 is a clock constraint
that is satisfied if and only if the current interpretation
of b is 0 (the symbol “=” is the comparison operator).

Definition 3.1 A deterministic timed alternat-
ing finite automaton (DTAFA) is a seven-tuple
���{
;���������V�������y��ZX���x� , where

(a) � is a finite set, the set of states, (b) � is
an alphabet, the input alphabet, (c) � J � is
the set of all starting states, (d) Z is a finite set,
the set of clocks, (e) � is a time transition function,
��_�
��6��=T������ ��=�
+��=T� ��� �����
��6�~=D
B������ =Q������=G� ,
(f) � is a letter symbol transition function from � into
the set of all functions from ��=�
�� � =f� � ��� � into
� � = � � ��� , that is, �|_�
�� � =~� � ��� �n=��¡��L� � = � � ��� ,
(g) � is a time accepting function, �h_��n��=��n���� ��L� .
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We denote by the symbol � the two-element Boolean
algebra �N� 
�� 7 �:/�� ��lS��pS���S��7 �:/ � . �6� is a vector
with ��� � elements referring to all the Boolean func-
tions from � to � , and � � ��� is a vector with ��Zh� ele-
ments (all non-negative) which refers to all real func-
tions from Z to � ��� . More specifically, the function
� is defined as:

� 
�
����:��� ���"�"�"�:���
	 � 	 ��b ����b ���"�"�"� ��b�	 � 	���� 
����������S�

�
����:���:�#�"�"�"�g���
	 � 	 ��bx�mCw����b���Cv���"�"�"�:��b�	 � 	 Cw���������
where �:$�\�� for /�c ,{c ��� � , b
� \ Z for
/oc�� c ��Zh� , � \d� and �S\X� ��� such that ��-f7 .

We extend � to the set of timed words defined as

�� � =<� � ��� �m=�
+�3=<� ��� � �?���
�� � =�
B� � ��� =<�����m=s�
such that:

� 
��6��	Q� ( �n��� 
��9
+� 
�� ��	G������� ( �
where � \ 
��6�0=������� ����	 \ 
+�8=>� ��� � � , and
��(k\�� . Also, it should be noted that �9
�� ��@ �s��� ,
where @ is the empty word.

For each state �]\z� , b�\zZ and � \f� , we define
�
�#
���� to be the Boolean function � � =^� �� � and
����
���� to be the function � � ��� =��¡�� �S��� such that

����
�� ( ��
��������
�#
�� ( ��� �
and

� � 
�� ( ��
�������� � 
�� ( ��� �
��(Y\^� � and �E(S\^� � ��� . Thus, the value of ����
���(���
����
is either 1 or 0 and the value of ��� 
���(5��
���� is either 0
or � (� , where � (� is an element of � ( .

We define ����
���(���� � to be the function � � =��¡��
� � by taking all the ���s� functions � � _ � � =d�r��K� ,
��\q� . Similarly, we define � � 
�� ( ����� to be the real
function ��� ��� =]�8�� ������ by taking all the ��Zh� func-
tions � � _�� � =d� � ��� ���� ��� , bf\vZ . For notational
convenience, � � 
���(B����� and � � 
���(B����� can be written
as one mapping, �9
�� ����� , �d\^
��V�]=|������ � and ��\�� .

All clock constraints on a given input symbol
from a given state must be mutually exclusive and
must span all �Y� ��� . For each input symbol �|\�� , con-
sider all clock constraints associated with this symbol.
If any two constraints overlap, then partition them up
into mutually exclusive constraints. The result should
be a set of mutually exclusive clock constraints whose
region, for each clock, spans all non-negative real
numbers.

Definition 3.2 An omega deterministic timed
alternating finite automaton ( � -DTAFA)

� �<
;���������V�������y��ZX��� � �T� is a deterministic
timed alternating finite automaton (DTAFA) over ex-
tended Boolean operations, where �<�������m�������x��Z>���
are all the same as in DTAFA and � is a set of
extended Boolean operations such that ��W �z��� .

In � -DTAFA, � � would be the set of all functions
from � into ( � U � ). ( ( � W �Q����� is specified so
an operator in � is not redefined). Each operator in �
must be given by a truth table.

Definition 3.3 Let ���{
;�<�������m�������x��Z>��� � �T� be an
� -DTAFA and 	K\¡
+�L=���� � be a timed word. 	
is accepted by A iff �n
�� 
+� 
 * ��	k�����d� / , where * \

��6� U �q=|������ � is the characteristic vector of � . For
each * � , �^\`� , * �~�M/ iff �^\q� ; and for each * � ,
* � ��7 , where bh\dZ .

Example 3.1 Consider the following � -DTAFA ���

;�����>���m�������y��ZX��� � �T� where �{����������� � ��� � � , �r�
� ����� ��e � , � �!��� � � , Zr���:b �#"$� , �n
�� � �����"���:����b6�#"��Y�
� � p ���np%�:� , �t�&� , and � is given by the following
tables:

State � � � e e
bd1�/ bd-�/ "<��7 "('f7

�)� � � � � l � � � � �)� 0
��� � � p ��� ��� l*�:� 1 ���6l(� � 0
�:� 0 � � ��� � � �:�

State-table for � -DTAFA � .

clk � � � e e
res bd1�/ b]-�/ "~�q7 "('f7
b ��� p*�:�S!"b � � l(���V! b 7o!"b 7G!:b /�!:b
" � � p � � !)" 7G!�" 7G!�" 7k!)" 7k!)"

Clock-reset (clk res) table for � -DTAFA � .

The characteristic vector of � is * �

�� � �����:���:�#��b6�#"����3
�/���7 ��7 ��7 ��7E� .

The clock-reset table simply gives the function
for the � � element of � in � 
�� ����� , where �v\�
��V�v=
� � ��� � , ��\�� , for all clocks b�\�Z . If the Boolean
value is 1, then we write /�!�b}�Mb (or b]! /��Lb )
to indicate a no reset. The symbol “ ! ” is the reset op-
erator and not the usual concatenation symbol. If the
Boolean value is 0, then we write 7 !�b>��7 (or b ! 7���7 )
to indicate a reset. In fact, the reset operator ” ! ” sim-
ulates the functionality of the ”multiplication opera-
tion” in the sense that anything multiplied by zero is
zero. In addition, if an entry of the table contains an
expression that is 0, this implies the expression is 7S!�b
(or bd!�7 ). Likewise, if an entry of the table contains
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an expression that is b , this implies the expression is
/Q!#b (or b>! / ). Moreover, 
�� ��l%� �"��!#b means that b
is reset if ���?� 7 and � �2� 7 . The following example
traces the non-acceptance of a timed word.

Example 3.2 Let 	��{
�e#�:/ ��
������ �

�n
�� 
+�6
 * � 
�e#�:/ ��
������ �������
� �n
�� 
+�6
�� 
+� 
 * � 
�e#�:/ ������� 
������ �������
� �n
�� 
+�6
�� 
+� 
�
�/���7 ��7 ��7 ��7E��� 
�e��:/g������� 
������ �������
� �n
�� 
+�6
�� 
�
�/���7 ��7 �:/��:/g����e �����g
������ �������
� �n
�� 
+�6
�
�7 ��7 ��7 ��7 �:/ ��� 
+�������������
� �n
�� 
�
�7 ��7 ��7 �:/���� ���������
� �n
�7 �:/���7 �:/���� ���
� 7Qp /Yp>7
� 7

Therefore 	 is rejected.

4 From DTAFA to
�

-DTAFA

Let � � and ��� be two DTAFA. Denote by
�o
�� � � and �o
�� � � the � -DTAFA corresponding
to the DTAFA � � and � � , respectively. Thus,

�o
�� � � � 
;� � ��� � ��� � ��� � ��� � ��Z � ��� � � � � � and
�o
������ � 
;�������������������	�����
����Z���������� � � � where
� � � � and � � � � . It follows that each function
with � � represents � into ( �jU � ) for � � .

Lemma 4.1 Given two DTAFA (or � -DTAFA) � � and
��� , we can construct an � -DTAFA � that accepts the
language 
Q
��G����
2
�� � ����
2
������ where � is a binary
operation.

Proof.
If � � and ��� are DTAFA, then convert them to � -
DTAFA.
Assume that � � and � � are now � -DTAFA and
� � � 
;� � ��� � ��� � ��� � ��� � ��Z � ��� � � � � � and ���K�

;�������������������	�����
����Z���������� � � � . We can construct
an � -DTAFA � � 
;����� ���m�������y��ZX��� � �T� accepting

Q
�� � ����
2
������ using the following algorithm:

Preconditions:
� � W�� � � � , (it follows that � � WX� � � � ) and Z � W
Z��2�&� . Let o be a Boolean operator, if o \ � � and
o is in � � , then it must be defined with the same truth
table.

Algorithm:
����� � U~� � U ��� �� ��� �� � , � ��� � U<� � , �^��� � U~� � ,
Z ��Z � U~Z�� , �z� � � U � � U ���$� . The function � is

defined in terms of � , � and Z .

�n
�� �� ��� �� �"�"�"�:���
�	 � � 	 ���

�� ��� �� ��� �� �"�"�:��� �	 � � 	 ��� �� �
b �� ��b �� �"�"�"�g��b

� 	 � � 	 ��b � � ��b �� �"�"�"� ��b � 	 � � 	 �n�

+� � 
�� �� ��� �� �"�"�"�:���

�	 � � 	 ��b
�� ��b �� �"�"�"�g��b

� 	 � � 	 �yp � �� �
�

+� � 
�� �� ��� �� �"�"�"�:��� �	 � � 	 ��b � � ��b �� �"�"�"�g��b � 	 � � 	 �yp � �� �

Let � � 
�� � ��� ��� � � ��� � 
�� � ������� � � , we define
� 
��6��� �Y� � , such that:
� � �3
�� �� ��� �� �"�"�"� ���

�	 � � 	 ��b
�� ��b �� �"�"�"� ��b

� 	 � � 	 � ,� � �3
���� � ������ �"�"�"� ����� 	 � � 	 ��b�� � ��b��� �"�"�"� ��b�� 	 � � 	 � and
���3
�� �� ��� �� �"�"�"�:���

�	 � � 	 ���
�� ��� �� ��� �� �"�"�"�:��� � 	 � � 	 ��� �� �b �� ��b �� �"�"�"� ��b

� 	 � � 	 ��b � � ��b �� �"�"�"�g��b � 	 � � 	 �
and � � �#� � \3
���6� � =���� � � , � � �#� � \¡
���6� � =j��� � � ,
� �#�>\^
���6�w=>������ � , where ��f�{
��jU �T� and b��� \]Z $
for /Gc �sc ��Z $ � and ,m�{/���� .
�
��� � �� iff ��\d� � and �|\�� �
�
��� ���� iff ��\d��� and �|\����
�
���q7 iff 
��<\�� � and � �\�� � �

or 
��<\�� � and � �\�� � �
�
���}/ iff 
��.� � �� and � �\�� � �

or 
��<\*� �� and � �\�� � �
� � � � � iff 
��.� � �� and �|\�� � �

or 
��<\*���� and �|\������
���.� � �� iff bh\dZ � and �|\�� �
� � � �	�� iff bh\dZ�� and �|\����
�
���q7 iff 
Bb]\dZ � and � �\�� � �

or 
Bb]\dZ�� and � �\������

5 Properties of
�

-DTAFA
Given two � -DTAFA � � and � � such that
� � � 
;� � ��� � ��� � ��� � ��� � ��Z � ��� � � � � � , and ��� �

;�������������������"���
����Z���������� � � � , where � � and ��� have! and " states, respectively. Then, there exists an � -
DTAFA � , where 
2
��k���#
Q
�� � �$�%
Q
�� � � for some
binary operator � , that has, in the worst case if no
state reduction is performed, the following number of
states:

Lemma 5.1 Let � � , ��� be two � -DTAFA, with ! and
" states, respectively. There exists an � -DTAFA �
such that 
2
��k�h�&
Q
�� � �'�(
2
�� � � for some binary
operator � for which the following results hold:
(i) � has ! C)" C*� states iff � �,+J���� and ��� +J`� � .
(ii) � has ! C-"rC�/ states iff � �/. � � or � � . � � .
(iii) � has ! C0" states iff � � ��� � .
Theorem 5.1 Timed regular languages accepted by

� -DTAFA are closed under complementation.
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Proof.
Given an � -DTAFA ���3
;���������m�������y��ZX��� � �T� , the
language accepted by � is Ik
��G� . The complement
of this language Ik
��k� is accepted by an � -DTAFA
� ( � 
;�<�������m�������x��Z>��� ( � �Q� such that � ( � � (the
logical negation of the accepting function � ).

Theorem 5.2 � -DTAFA are closed under all Boolean
operations. Moreover, they are closed under several
other important operators (For example, i.e., logical
implication ( � ), logical bi-conditional ( � ), differ-
ence (/), and symmetric difference ( � )).

Proof.
Due to space constraints we only give the proof
and the algorithm of the union operation. Then,
we can adapt this proof to construct the cor-
responding � -DTAFA of the other binary opera-
tions. Let � � and ��� are two � -DTAFA such

that � � � 
;� � ��� � ��� � ��� � ��� � ��Z � ��� � � � � � , and
� � � 
;� � ��� � ��� � ��� � ��� � ��Z � ��� � � � � � be two � -
DTAFA. We can construct an � -DTAFA � �

;�����>���m�������y��ZX��� � �T� such that I2
��G�d��Ik
�� � ��U
Ik
������ .

Preconditions:
� � Wk����� � , (it follows that � � W2� ��� � ), Z � W2Z��n�
� .

Algorithm:
�}��� � UX� � U ��� �� ��� �� � such that � �� ��� �� +\]� � U�� � ,
� ��� � Uw� � , � ��� � Uw� � , Z �NZ � UwZ � and
�z� � � U � � . � is defined as in Section 3 given �����
and Z . The function � is defined as follows:

�n
�� �� ��� �� �"�"�"�:���
�	 � � 	 ���

�� ��� �� ��� �� �"�"�:��� �	 � � 	 ��� �� �
b �� ��b �� �"�"�"� ��b

� 	 � � 	 ��b � � ��b �� �"�"�"�g��b � 	 � � 	 �n�

+� � 
�� �� ��� �� �"�"�"�:���

�	 � � 	 ��b
�� ��b �� �"�"�"�:��b

� 	 � � 	 �yp � �� ��l

+� � 
�� �� ��� �� �"�"�"�:��� �	 � � 	 ��b � � ��b �� �"�"�"�:��b � 	 � � 	 �yp � �� �

where


�� �� ��� �� �"�"�"�:���
�	 � � 	 �¡\�� � , 
����� ������ �"�"�"� ����� 	 � � 	 �3\ ��� ,


Bb �� ��b �� �"�"�"�:��b
� 	 � � 	 �S\dZ � , 
Bb � � ��b �� �"�"�"� ��b � 	 � � 	 ��\hZ � .

The operator l is referred to as the “critical binary
operator”. The function � is defined as follows:

� 
��6��� �<� ����� � 
�� � �����D� � � ��� � 
�� � ������� � � , where
� � �#� � \^
�� � � =�� � � � ; � � �#� � \^
�� � � =�� � � � ; � �#��\

��6� =>������ � , ��\�� .

�
��� � �� iff �<\�� � and � \d� �
�
��� ���� iff �<\���� and � \d���
�
���q7 iff 
��<\d� � and � �\d� � �

or 
��<\d� � and � �\d� � �
� � �� � � � �� iff ��\�� �
� � �� �}/ iff � �\����
� � �� � � � �� iff ��\����
� � �� �}/ iff � �\����
� � � � �� iff b]\dZ � and � \d� �
� � � � �� iff b]\dZ � and � \d� �
� � �q7 iff 
Bb]\dZ � and � �\d� � �

or 
Bb]\dZ�� and � �\d�����
Note that:
���3
�� �� ��� �� �"�"�"�:���

�	 � � 	 ���
�� ��� �� ��� �� �"�"�"�:��� � 	 � � 	 ��� �� �b �� ��b �� �"�"�"� ��b

� 	 � � 	 ��b � � ��b �� �"�"�"�g��b � 	 � � 	 �� � �3
�� �� ��� �� �"�"�"� ���
�	 � � 	 ��b

�� ��b �� �"�"�"� ��b
� 	 � � 	 �� � �3
�� �� ��� �� �"�"�"� ��� � 	 � � 	 ��b � � ��b �� �"�"�"� ��b � 	 � � 	 �

such that
� ��� � �� iff ��\d� �
� ��� � �� iff ��\d� �
� � � � �� iff bh\dZ �
�$�.� � �� iff bh\dZ �

The following Lemma is a direct result from the union
and intersection algorithms.

Lemma 5.2 For any integers "j� ! -3/ , let � � be an
" -state and � � be an ! -state � -DTAFA. Then, "0C! C�� and "iC ! CX/ states are sufficient and necessary
in the worst case ( � �-+JN��� , ��� +J � � ) for an � -
DTAFA � to accept the languages Ik
�� � �#UQI2
�� � � and
Ik
�� � �yW�Ik
�� � � , respectively. (Note that � � U>� � and
� � W���� are not reduced).

The critical binary operator can be redefined by a truth
table to perform different logical language set opera-
tions. For example, p (nand), l (nor), � (xor), �
(logical bi-conditional) and � (logical implication).

Corollary 5.1 The logical operators lS��pS� l�� pS��� ,
and � generate the languages Ik
�� � �>l Ik
�� � � ,
Ik
�� � � p{Ik
�� � � , I2
�� � �xl�Ik
�� � � , I2
�� � �yp�Ik
�� � � ,
Ik
�� � �yl�Ik
�� � � , and Ik
�� � �vIk
�� � � , respectively.

The logical bi-conditional ( ��� � ) can describe and
model the following language:

I2
�� � ���vIk
�� � �
� I2
�� � � �#Ik
�� � �xU>I2
�� � � �#I2
�� � �
� I2
�� � �yW Ik
�� � �yU 
Q
�� � �xW Ik
�� � �
� I2
�� � �yW Ik
�� � �yW I2
�� � �xW Ik
�� � �
� I2
�� � �yU�Ik
�� � �yW I2
�� � �xU|Ik
�� � ���
� 
 I2
�� � �xW Ik
�� � ���yUj
�I2
�� � �xW|Ik
�� � ���
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Since � -DTAFA are closed under all Boolean opera-
tions, it is simple to prove that � -DTAFA are closed
under difference and symmetric difference operations.

Lemma 5.3 Let � � and � � be two � -DTAFA. Then,
Ik
�� � � �#Ik
������ � Ik
�� � � W Ik
�� � � and Ik
�� � � �
Ik
�� � �n�{
�Ik
�� � �yW Ik
�� � �yUj
�Ik
�� � �xW Ik
�� � ���

Proof.
For the difference operation, an easy way to construct
an � -DTAFA � � � � �#��� is to perform the union
algorithm, except replace the critical binary operator
with the binary operator “/”. For the symmetric differ-
ence � , which is also the set-theoretic equivalent of
the exclusive-or operation in Boolean logic. The sym-
metric difference algorithm construction can be done
with the union algorithm by replacing the critical bi-
nary operator l with the binary xor operator ” � ”.

� -DTAFA may contain less states than a corre-
sponding DTAFA. For example, the operator � can
be simulated using only p�l , and � . Thus in gen-
eral, ��
 ! C "d�nC �

states are needed to simulate the
� operator using p¡l , and � as opposed to only! C�"zCh/ states using directly the operator � . There-
fore, � -DTAFA contain less states than a correspond-
ing DTAFA would. Also, the algorithm needs only to
be run once using the � operator as opposed to three
times in DTAFA using pS��l and � operators.

6 Conclusion

Despite being very expressive for describing timed be-
haviors and presenting a powerful computational par-
allel model, both TFA and TAFA are neither deter-
minizable nor closed under complementation. For � -
DTAFA, closure under complement relies on the mu-
tual exclusive clock construction. Thus, � -DTAFA is
a determinizable class of TAFA closed under all the
Boolean operations, including some of the most im-
portant operators. The addition of the concepts of al-
ternation and timing to finite automata increase their
expressive and descriptional power, as measured by
the size of the automaton. This decrease in the state
complexity of � -DTAFA could simplify proofs in lan-
guages and complexity theory. Moreover, the issue
of state complexity and expressiveness have immedi-
ate practical application in software and real-time sys-
tems.
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