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Abstract: - The control problem of a tentacle manipulator using a robust 3 D visual servoing is presented. The 
theoretical model of this class of arms is studied. Servoing is based on binocular vision obtained from two 
cameras that ensure a continuous measure of the arm parameters. The control errors function is built in 3D 
cartesian space from the visual information obtained in the two image planes. The 2D errors are determined as 
shape errors, they are calculated as the differences between the actual and desired continuous angle values. A 
spatial error is determined and a control law is discussed. Computer simulations and real 3-D experiments are 
presented in order to show the applicability of the method. 
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1   Introduction 
 An ideal tentacle manipulator is a non-
conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes 
and of achieving any position and orientation in a 
3D space. These systems are also known as 
hyperredundant manipulators and, over the past 
several years, there has been a rapid expanding 
interest in their study and construction. 
 The control of these systems is very 
complicated and a great number of researchers tried 
to offer solutions for this difficult problem. In [1] it 
analyses the control by cables or tendons meant to 
transmit forces to the elements of the arm in order to 
closely approximate the arm as a truly continuous 
backbone. Also, Mochiyama has investigated the 
problem of controlling the shape of an HDOF rigid-
link robot with two-degree-of-freedom joints using 
spatial curves [7], [8]. Important results were 
obtained by Chirikjian and Burdick [3] – [6] who 
laid the foundations for the kinematic theory of 
hyperredundant robots. Their results are based on a 
“backbone curve” that captures the robot’s 
macroscopic geometric features.  
 The inverse kinematic problem is reduced to 
determining the time varying backbone curve 
behaviour. New methods for determining “optimal” 
hyper-redundant manipulator configurations based 
on a continuous formulation of kinematics are 
developed. In [2], Gravagne analysed the kinematic 
model of “hyper-redundant” robots, known as 

“continuum” robots. Robinson and Davies [8] 
present the “state of art” of continuum robots, 
outline their areas of application and introduce some 
control issues. The great number of parameters, 
theoretically an infinite one, makes very difficult the 
use of classical control methods and the 
conventional transducers for position and 
orientation. 
 In this paper the method of image-based 
servoing [12,15] for a hyperredundant arm is 
studied. Servoing is based on binocular vision. A 
continuous measure of the arm parameters, derrived 
from the real-time computation of the binocular 
optical flow over the two images, is compared with 
the desired position of the arm.  
 The control error function is built in 3D 
cartesian space using the visual information 
obtained from two cameras in two image planes 
[13]. The two 2D errors obtained in the two image 
planes are determined by the two differences 
between the actual and desired continuous angle 
values that define the projections of the arm shape. 
The plane errors can be considered as errors of the 
arm shape. These errors are used to calculate the 
spatial error and a control law is synthesized.  
 For the closed-loop control system, the stability 
is proven by using the Lyapunov second method. 
The error function is computed virtually in the 
image spaces and the fact that no calibration 
(camera parameters) is required allows the synthesis 
of a more robust control laws.  
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2   Background 
 Consider a 3D hyperredundant robot with a three 
dimensional Cartesian coordinate frame called the 
robot coordinate frame whose axes are labeled X, Y, 
Z. The mechanical structure represents an ideal arm, 
with an uniform distributed mass and torque, with 
ideal flexibility that can take any arbitrary shape 
(Fig. 1). We will neglect friction and structure 
damping. The essence of the model is a 3 – 
dimensional backbone curve C that is parametrically 
described by a vector 3)s(r ℜ∈  and an associate 
frame 3)s( ℜ∈Φ   whose columns create the frame 
base (Fig. 2) [2,3]. The independent parameter s is 
related to the arc length from the origin of the curve 
C. The position of a point s on the curve C is defined 
by the position vector, 
 
 )s(rr =                (2.1) 
 
where ]l,0[s ∈ . For a dynamic motion, the time 
variable is introduced, )t,s(rr = . The 
parametrisation of the curve C is based on two 
“continous angle” )s(θ  and q(s) [3,5] (Fig. 2). At 

each point )t,s(r , the robot’s orientation is given by 
a right-handed orthonormal basis vector 

}e,e,e{ zyx  and its origin coincides with the point 
)t,s(r . The set of backbone frames can be 

parametrized as 
 

( ))t,s(e),t,s(e),t,s(e)t( zyx
s =Φ           (2.2) 

 
 The pointer vector on curve C is given by  

 
( )T)t,s(z),t,s(y),t,s(x)t,s(r =             (2,3) 

 
where 

∫ ⋅⋅=
s

0

'ds)t,'s(qcos)t,'s(sin)t,s(x θ

∫ ⋅⋅=
s

0

'ds)t,'s(qcos)t,'s(cos)t,s(y θ    (2.4) 

∫ ⋅=
s

0

'ds)t,'s(qsin)t,s(z  

where ]s,0['s ∈ . 
 

 We adopt the following interpretation [6,7]: at 
any point s the relation (2.4) determines the current 
position and sΦ  determines the robot’s orientation 
and the robot’s shape is defined by the behaviour of 
function )s(θ  and q(s). The robot “grows” from the 
origin by integrating to get )t,s(r , ]l,0[s∈ . By 
using this definition, two position of the 
hyperredundant can be defined by a curve C as  

 
 ))s(q),s((:C θ          , ]l,0[s ∈            (2,5) 
 
 The motion and orientation of the arm are given 
by the distributed forces on the legth of the arm, 

)t,s(Fθ  and )t,s(Fq  that rotate the element ds in 
the planes of the angles )s(θ  and q(s), respectively. 
The manipulator model is considered as a distributed 
parameter system defined on a fix spatial domain 
[0,l] and the spatial coordinate is s. The dynamic 
model of this manipulator with hyperredundant 
configuration can be obtained from Hamilton partial 
differential equations [10]. 
  

)s,t(
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where ω  and ν  are the generalised coordinates and 
momentum derivated respectively and (.)/(.) δδ  
denotes a functional partial derivative. 
 The state of the system ot any fixed time t is 
specified by the set ))s,t(),s,t(( νω , where 

T]q[θω ∈  The control force is a distributed 
force along the arm 

 
 [ ]TqFFF θ=                            (2.7) 
 
 
2   Camera System 
 In the Appendix 1 the dynamic model of the 3D 
spatial hyperredundant arm is determinated. Two 
video cameras provide two images of the whole 
robot workspace. The two images planes are parallel 
with XOY and ZOY planes from robot coordinate 
frame, respectively (Fig. 3). The cameras provide 
the images of the scene stored in the frame grabber’s 
video memory being displayed on the computer 
screens. Related to the image planes, two 
dimensional coordinate frames, called screen 
coordinate frames or image coordinate systems are 
defined. Denote 

1SX , 
1SY  and 2SZ , 

2SY , 
respectively, the axes of the two screen coordinate 
frames provided by the two cameras. The spatial 
centers for each camera are located at the distances 
D1 and D2, with respect to the XOY and ZOY 
planes, respectively. The orientation of the cameras 
arround the optical axes with respect to the robot 
coordinate frame, are noted with ψ  and φ , 
respectively. A point P in the coordinate frame is 

 
 P=[ x, y, z]T                          (3.1) 

 The description of a point P in the two screen 
coordinate frames are denoted by 

 
 

1SP =[ 1Sx ,
1Sy ]              (3.2) 

 2SP =[
2Sz ,

2Sy ]              (3.3) 
 

 Geometric optics are used to model the mapping 
between the robot Cartesian space and the screen 
coordinate systems. We assume that the quantization 
and the lens distortion effects are negligible. The 
description of the point P=[ x, y, z]T in the robot 
coordinate frame is given in terms of screen 
coordinate frames as [9] 
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for the 

111 SSS YOZ  frame and 
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for the 

222 SSS YOZ  frame, where [
1xc ,

1yc ]T and 
[

2zc ,
2yc ]T the image centers, 1α  and 2α  are the 

scale factors of the length units in the front image 
planes given in pixel/m [9,15],  R(ψ ) and R(φ ) are 
the rotation matrices generated by clockwise rotating 
the cameras about their optical axes by ψ  and φ  
radians, respectively, and [o11, o12]T and [o21, o22]T 
represent the distances between the optical axes and 
the XOY and ZOY planes, respectively.  
 In Fig. 4 the screen images of the two cameras 
are presented. From the relations (3.4), (3.5),  we 
obtain 
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and the orientation angles for each plane will be  
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hence  

 
)s()'s(s θθ =  , ]l,0[s ∈ , ]'l,0['s ∈   (3.9) 
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 This relation allows the computation of the 
orientation angle sq  in the plane 

222 SSS YOZ  
 

 
)s(cos

1)s(tgq)''s(tgqs θ
⋅=  

  ]l,0[s ∈ , ]''l,0[''s ∈            (3.10) 
 

where, ''s,'s and ''l,'l  represent the projections of 
the variable s and the length l in the two planes, 
respectively. The projection of the forces on the two 
planes can be easily inferred from the Fig. 2 and the 
relations (3.8)-(3.10), 

 
θθ FF

s
=              (3.11) 

θ222
qq cosqsinqcosFF

s
⋅+⋅=      (3.12) 

 
 

3   Servoing system 
 The control system is an image – based visual 
servo control where the error control signal is 
defined directly in terms of image feature 
parameters.  The desired position of the arm in 
the robot space is defined by the curve Cd,, 
 
 ))s(q),s((:C ddθ  , ]l,o[s ∈        (4.1)  
 
or, in the two image coordinate frames 

111 SSS YOZ  
and 

222 SSS YOZ , by the projection of the curve C, 
 
 ))'s((:C d

s
d
s1

θ   , ]'l,0['s ∈       (4.2) 

 ))''s(q(:C d
s

d
s2

 , ]''l,0[''s ∈              (4.3) 
 
Define the motion errors as 
 
 )s()s,t()s,t(e dθθθ −=  , ]l,0[s ∈      (4.4) 
 )s(q)s,t(q)s,t(e dq −=  , ]l,0[s ∈       (4.5) 
 
or, in the image coordinate frames, by ]'l,0['s ∈ , 

]''l,0[''s ∈  
 
 )'s()'s,t()'s,t(e d

sss
θθθ −=                   (4.6) 

 )''s(q)''s,t(q)''s,t(e d
sssq −=               (4.7) 

 
 The global control system is presented in Fig. 5. 
The control problem of this system is a direct visual 
servocontrol but we do not use the clasical concept 
of the position control where the error between the 
robot end-effector and target is minimized. In this 
paper we will use the control of the curve’s shape in 
each point of the mechanical structure. The method 
is based on the particular structure of the system 
defined as a “backbone with two continuous angles 

)s(θ  and q(s)”. The control of the system is based 
on the control of the two angles )s(θ  and q(s). 
These angles are measured directly or indirectly.  
The angle )s(θ   is measured dircetly by the 
projection on the image plane 

111 SSS YOZ  (relation 
3.9) and q(s) is computed from the projection on the 
image plane 

222 SSS YOZ  (relation 3.10). The stability 
of the closed-loop system is proven by the 
Lyapunov’s second method but, in order to avoid the 
complex problems derived from using the nonlinear 
derivation integral model, in this paper a method 
based on the energy-work relationship [14] will be 
developed. 
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Propostion: The closed-loop hyperredundant arm 
system is stable if the control law is given by 
 

)t,'s(e)s(k)t,'s(e)s(k)t,s(F ss

21
θθθθθ

•
⋅−⋅−=    (4.8)

 
 [ ⋅⋅−= − ))t,'s((costg)s(k)t,s(F s

11
qq θ  

  ])s(q)t,''s(tgq d
s −⋅                 (4.9) 

 
where ]'l,0['s ∈ , ]''l,0[''s ∈  and 

)s(k),s(k),s(k 1
q

21
θθ  are positive coefficients of the 

control law for all ]l,0[s ∈ . The parameter of the 
control law (4.8), (4.9), can be inferred from the 
image feature extraction of the two planes. The 
parameters 

s
eθ  can be directly calculated from 

equation 4.6 and seθ
•

 can be indirectly computed. 

Also sθ , qs and d
sq  are evaluated directly from the 

trajectory projections. We remark that the control 
law (4.8), (4.9) represents a robust control, 
independent of the camera parameters. No intrinsec 
camera parameters are assumed known. 

5  Experimental model 
 We used an experimental model presented in Fig. 
6. The manipulator has a very simple design 
consisting of a highly elastic rod and its “backbone” 
with antagonic cable pairs periodically able to exert 
moments on the backbone to deform its shape. [1]. 
Although this is a truly continuous device, as a 
hyperredundant model, it is only actuated with 6 
degrees of freedom. The driving system consists of 6 
DC motors that offer the advantage of a good closed 
loop system. An Unversal Power Module – Quancer 
is used in order to implement the control of driving 
system. The video system is based on DT3162 frame 
grabber from Data Translation. Two Pulnix TMC 
76S CCD cameras with Vista 4.8 mm F1.8 lens were 
mounted in perpendicular planes offering the input 
for the frame grabber. The image processing tasks 
are performed using Global LAB Image2 from Data 
Translation. The robot control algorithms are 
implemented in a C++ program running on a 
Pentium IV PC. In order to facilitate the image 
feature extraction, a set of markers are placed on 
joints along the backbone structure (Fig. 7). The 
localization of the markers in the image planes 
assures the identification of the curves  

1sC   and 
2sC  

in the planes 
111 SSS YOX  and 

222 SSS YOZ  
respectively. In the Fig. 8 is shown an example of 
curve 

2sC  and the desired curve d
s2

C . 
 
 
6  Conclusions  
 In this paper the method of image-based servoing 
for a hyperredundant arm is studied. Servoing is 
based on binocular vision. A continuous measure of 
the arm parameters, derrived from the real-time 
computation of the binocular optical flow over the 
two images, is compared with the desired position of 
the arm. The control error function is built in 3D 
cartesian space using the visual information obtained 
from two cameras in two image planes. The two 2D 
errors obtained in the two image planes are 
determined by the two differences between the 
actual and desired continuous angle values that 
define the projections of the arm shape. The plane 
errors can be considered as errors of the arm shape. 
These errors are used to calculate the spatial error 
and a control law is synthesized. For the closed-loop 
control system and a control law the stability is 
proven by using the Lyapunov second method. The 
error function is computed in the image spaces 
virtually and no calibration is required allowing the 
synthesis of more robust control laws.  Figure 6 
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Figure 7 
a) 2s2s1s YOZ  image plane 
b) Detail of position marker 

a)  

b)  

d
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Figure 8 Postprocessed image 
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