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Abstract: - This work describes an integrated tool based on analogical reasoning for retrieval and 
presentation of the data in a summarized form acceptable to computer managers and to the people 
interested in computer performance. The underlying technique uses exact and fuzzy reasoning to retrieve 
computer systems that reveal similar performance characteristics. We tested the tool on two different 
domains. The first is a simple domain consisting of taxonomic properties of some classes of animals 
characterized by qualitative and nominal data, while the second domain is a collection of examples from 
different runs of a computer performance modeling package. These examples are allowed to have 
qualitative and quantitative properties. 
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1. Introduction 
The analogical-reasoning method which is described here is based on the idea of considering the results 
from a modeling package as a new example to be matched against existing examples that are collected 
from several runs of the package for different computer configurations [3]. This is because we expect that 
not all expert  interpretations  of the  meanings of a model's outputs can be matched with rules that have 
general validity [4]. An alternative source of expertise  is  an extensive  memory  E of special examples 
and their meaning. Faced with a new example N, it may be possible to estimate a  meaning for N by 
assuming that some suitable description of N relates to an equivalently-phrased description of a 
component Ei of E in the same way that the meaning of N relates to the meaning of Ei.   
Using fuzzy indexing and retrieval allows attributes that are characterized by quantitative values to be 
converted into fuzzy sets to simplify comparison. For example, the utilization of CPU can be converted 
into categorical scale (e.g. high, low, moderate). Also, fuzzy sets allow multiple indexing of an object on 
a single value with different degrees of membership. For example, if the CPU utilization is 60, this can be 
classified as high with 0.4 and moderate with 0.7, where 0.4 and 0.7 are the degrees that the CPU 
utilization is classified as high or moderate respectively. Further more, fuzzy sets allow term modifiers to 
be used to further increase the flexibility in object retrieval.  
 
2. The Use of Fuzzy Sets 

In fuzzy sets an object may partially belong to a set, so the set must be represented by a continuous 
membership function that maps the domain of the set to an interval of [0,1]. For example, the following 
functions (1-3) and Figure 1 show the membership functions of high, moderate and low utilization [7, 8]. 

 
1. µhigh(x)=(x-x1)/do if x1 ≤ x ≤ x2, 0 if x <x1, and 1 if x>x2 
 
2. µmoderate(x)=(x-x1)/0.5do if x1 ≤ x ≤ midpoint,  
    µmoderate(x)=(x2-x)/0.5do if  midpoint ≤ x ≤ x2, µmoderate(x)=0 otherwise 
 
3. µlow(x)=(x2-x)/do if x1 ≤ x ≤ x2, 0 if x >x2, and 1 if x< x1 
Where x1, x2, do, and midpoint are as follows: 
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Figure 1: The membership function of high, moderate and low utilization 
 

3. Indexing and Retrieval  
Fuzzy indexing and retrieval are useful in domains where objects have quantitative attributes. For 

objects with qualitative attributes only, indexing can be performed on attributes directly. For example, 
system performance can be classified as excellent, good, average, or poor (four classes). We can easily 
index systems by their quality of performance.  

 
3.1. Fuzzification Process 
The fuzzification process includes the following steps: 

1. When an object is encountered, qualitative attributes are identified. 
2. For each quantitative attribute, proper classes are determined based on practical needs. 
3. The membership function of each class and its associated α-cuts are determined. 
4. Numerical values of each object are converted into proper classes for indexing. 

 
To illustrate the fuzzification process, a running example is used. The context is a Unix system with 

one multiprocessor CPU and a disk subsystem, which consists of two disks. The pay load consists of three 
different types: a database service, an interactive service and a backup service. The database service is of 
a transaction processing type (tp), the interactive workload is of a terminal type (tm), and the backup 
service is of a batch type (ba). Table 1 shows the current measurements (using an accounting routine 
and/or a modeling package) collected for this performance problem.  

 

Attribute Value 
Number of Devices 
Workload 
CPU Utilization 
Dick-1 Utilization 
Disk-2 Utilization 
Memory Occupation 
Type of Largest CPU Process 
Type Largest IO Process 
Type Largest Memory  
Queue Length 

3 
multicasts 
0.65 
0.58 
0.06 
0.14 
ba 
tm 
ba 
2 

Table 1:  Measurements of a Computer System 
 

utilization
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Using a frame-based representation, Figure 2 shows a problem instance that is transformed from Table 
1.  
(Problem-Instance 
    (kind-of (computer-system multicasts  
         CPU-problem I/O-problem)) 

    (unusual-property (if-needed obtain-unusual))  
    (CPU (high/0.88, modrate/0.25, low/0.13)) 
    (IO-subsystem-uti (unbalanced)) 
    (bottleneck-recourse (CPU)) 
    (bottleneck-process (ba)) 
    (queue-length (if-needed 2)) 
    (analysis (if-needed generate-analysis)) 
    (resolution ())) 

Figure 2:  A frame based problem instance 
 
In the transformation of the measurement data in Table 1, the fuzzifier handles the quantitative values 

that need to be converted into qualitative data.  Usually, computer managers classify the CPU utilization 
into three classes: high, moderate, and low. Using the membership functions, given above, the fuzzifier 
converts the CPU utilization value 0.65 into membership grades of the respective classes: 0.88 for high, 
0.25 for moderate and 0.13 for low. However, if the α-cut is set to 0.5, then the CPU utilization is 
classified as high/0.88 only. 
 
3.2. Object Representation 

Once a problem instance is indexed, four additional attributes are added before it becomes an object to 
be stored in the database. These additional attributes are: the object number, the unusual or the interesting 
property, the problem analysis, and the problem resolution. The data for the first three of these attributes 
are obtained automatically by using the attachment functions, whereas a computer performance expert 
adds the value for the last attribute, namely the problem resolution. 

The thrashing (when the utilization of all devices is low and the queue length>0) in the model output is 
an interesting property. The migration of the cause of a bottleneck from a hardware component, say disk 
1, to another, say disk 2, is also an interesting feature. Figure 3 depicts these points. 

  

 
Instance analysis is generated during object acquisition process. The system uses some fuzzy rules (see 

section 3.3) in order to automatically generate a performance analysis for the problem instance. For this 
running problem instance, the generated analysis is as follows. 

     ((stop or replace some batch jobs or programs that need 
        high CPU time with other jobs or programs that need nothing but I/O) 
     (Rewrite the programs in more efficient ways) 
     (Redistribute the jobs to run in another period) 
    (Balance the load on I/O store devices)) 
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The problem is then referred to a performance expert to identify the major bottlenecks along with their 

resolutions.  Compared with the analysis reached by the system, the expert adds the problem resolution. 
For this case, the statement “stop the batch process” is considered as the solution and therefore added as a 
value for the resolution attribute. After the problem is solved, the attributes unusual-property, queue- 
length and analysis become redundant and should, therefore, be eliminated. Other attributes may become 
irrelevant and their values should be replaced with the wild card character “*”.  At the final stage an 
object number is assigned and the object is added to the database. 

 
 (Example 1 
    (a-kind-of (computer-system multi-classes CPU-problem I/O-problem)) 

    (CPU-uti (high/0.88)) 
    (IO-subsystem-uti (*)) 
    (bottleneck-recourse (CPU)) 
    (bottleneck-process (ba)) 
    (resolution (Stop the batch process))) 
 
Following the same procedures, Table 2 displays several objects in the database. 
 

3.3 Object Retrieval 

N
o. 

Bottleneck 
 Process 

Bottleneck 
 Resource 

Fuzzy  
CPU Uti 

Fuzzy 
I/O Uti 

Memory 
Wait 

Unusual  
Property 

Resolution 

1 ba CPU high/0.62 
modrate/0.25 
low/0.13 

* * * Stop the 
batch process 

2 * CPU high/0.54 
modrate/0.54 
low/0.45  

* * * Optimize the 
large 
programs 

3 tm CPU, IO high/0.3 
moderate/0.6 
low/0.7 

high/0.66 * * Reduce the 
number of 
active 
terminals. 

4 * Memory moderate/0.45 * high/0.72 thrashin
g 

Upgrade 
memory 

5 tp IO * high/0.54 
moderate/0.58 

* * Add a faster 
IO device. 

6 * CPU high/0.57, 
moderate/0.46 
low/0.42 

* * * Optimize 
programs that 
required high 
CPU 
demand. 

7 * CPU high/0.92 
modrate/0.15 

* * * Replace CPU 

8 * IO * unbalanced * * Balance I/O 
loads 

9 * CPU high/0.67, 
moderate/0.3 
low/0.09 

unbalanced * * Recode the 
programs.     
Redistribute 
the jobs. 
Balance I/O 
load.  

10 * * high/0.5 
modrate/1 
low/0.5 

modrate/0.3 modrate/
0.3 

* Satisfactory 
performance 

 Table 2: Examples (objects) in a sample database 
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Given the examples (objects) in Table 2, suppose we want to evaluate the performance of a computer 
configuration that is described by the following table. 

 
 
Attribute Value
Number of Devices 
Workload 
CPU Utilization 
Dick-1 Utilization 
Disk-2 Utilization 
Memory Occupation 
Type of Largest CPU Process 
Type Largest IO Process 
Type Largest Memory  
Queue Length 

3 
multi-

classes 
0.54 
0.32 
0.35 
0.27 
ba 
tm 
ba 
1 

Table 3: A computer configuration 
 
After transformation of data in table 2 using the membership functions defined previously, the 

following problem instance is produced. 
 

(Problem-Instance 
    (kind-of (computer-system multi-classes CPU-problem)) 

    (unusual-property (if-needed obtain-unusual))  
    (CPU (high/0.59, modrate/0.8, low/0.4)) 
    (IO-subsystem-uti (*) 
    (bottleneck-recourse (CPU)) 
    (bottleneck-process (*)) 
    (queue-length (if-needed 1)) 
    (analysis (if-needed generate-analysis)) 
    (resolution ())) 

 
Figure 4: A problem instance 
 
Based on the matching attributes of the problem instance, the object retrieval can easily select the 

object 1, 2, 6 and 7 from the database to be used as bases for performance evaluation of this new problem 
instance. There are several ways of finding the most similar object. In this work, we use the following 
algorithm (similarity measure) [9, 10]. 

 
1. The similarity measure, dq, for an attribute to set to 0 if the attribute’s value for the object is equal 

to the attribute of the problem instance; dq is set to 0.5 if the attribute’s value for the object is a 
wildcard (i.e. ‘*’).  Otherwise the measure for the attribute is set to 1. 

2. The similarity measure for fuzzy attributes is calculated as follows: 

∑ −=
j

ijnijki xxabsd )( ; where xijk and xijn are the grades of attribute i, class j, for 

objects k and n respectively. 
 

3. The similarity measure for the object is the sum of the results obtained from (1) and (2). 
dc= dq + di 

 
Table 4 displays the results of applying this algorithm to the problem instance in Fig 4 and the objects 

in Table 2.  Object 6 is, therefore, the most similar object to the problem instance. 
 
Object Fuzzy CPU Utilization Distance 
1 high/0.62, modrate/0.25, low/0.13 0.85 
2 high/0.54. modrate/0.9, low/0.45 0.2 
6 high/0.57, modrate/0.85/low/0.42 0.09 
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7 high/0.92, modtare/0.15, low/0 1.38 
Problem Instance high/0.59, modrate/0.8, low/0.4 0 
 
Table 4: Distances between the problem instance of Fig 4 and the candidate objects 

 
4. System Implementation 
The system consists of three modules which are: information-transfer module (ITM), object-search 
module (OSM), and object learning module (OLM). The user may name a destination and a source. In the 
following sentence: "X is like Y"; X is the destination and Y is the source, which is may or may not 
given. 

 
4.1. The Information-Transfer Module (ITM) 
The goal of this module can be described as follows. 
Given: 
(i) A statement that identifies the destination and the source objects.  
(ii) A statement that identifies the class of the object Y, such as "Y is Z"; where Z is the class of the object 
Y.  
Construct: 
(i) An initial-transfer frame (ITF) that contains the properties of the source objects Y. The interesting 

properties (important and unusual properties) should be given a higher weight.  
(ii) A final-transfer frame (FTF) that contains, in addition to the specification of the ITF, the properties of 

the objects which are listed in the a-kind-of slot of the frame that represents the object Y.   
If the a-kind-of relationship has a long list of objects, then a subset of that list is selected. This subset 

is ended with an object that is allocated at the basic level. The basic level in the hierarchical organization 
of objects is considered as a level that contains objects after which no further interesting information can 
be added [5, 6, and 7].  

The process administered by ITM depends on fuzzy reasoning; see section 3, and the following 
heuristics for constructing a transfer frame from a given object: 
(a) Select properties that reveal unusual properties of the object. For example, the property does-not-fly is 

an unusual feature for a bird while the outliers in the model output are unusual properties of a 
computer system, see Figures 5 and 6. The migration of the cause of a bottleneck from a hardware 
component, say disk 1, to another, say disk 2, is also an unusual property... 

(b) Select important properties. For example, the properties long-legs and long-neck are important 
properties of the animal giraffe.  

(c) Select properties which are not found in the closely related objects. 
(d) Select properties that may be given by a user through an interactive dialogue.  
(e) Select all slots and values. 

 
Figure 5: Unusual feature (thrashing)  
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Figure 6: Unusual feature (extreme point) 
 
 

4.2. Object-Search Module (OSM) 
The purpose of this module is to find an object among the offspring of the class of the destination object. 
Thus, OSM is a search procedure that starts the search from the class of the destination object which is 
allocated at the same level as the class of the source object.  

Computing the target frame requires OSM should pass through the following steps. 
(i) Match the properties of the final-transfer frame (FTF) against the properties of each frame at the 

lowest level of the hierarchical structure (the last offspring of the class of the destination object). 
(ii)  Compute the distance measure (dm) of the matching results for each slot as follows: 

 
 dm = ∑ Psi ;   i = 1, 2, . . ., n 
  Psi = P/T; where  

Psi  is the matching results for each slot, where s is the slot number, 
P is the number of successful property matches, and 
T is the total number of the properties of a slot of the target and  the  FTF. 

 (iii) Compute the final distance measure by adding the distance measure resulted from fuzzy reasoning, see 
section 3. 

(iv) Repeat (i) to (iv) for each frame in the lowest level of the class of the target frame. 
(v)  Sort the resulting object-distance pairs according to their measurements. 
(vi) Select the object that has the highest measurements. 
(vii) Announce that the selected object is the target object. 
(viii) Repeat (vi) and (vii) if the user is not satisfied with the result until a satisfactory object can be reached 

or until no object can be found. 
(ix) Call the object learning module (OLM), see section 4.3, to construct a rule when the result is 

satisfactory and the associated distance measure is high. 
 
4.3. Object Learning Module (OLM) 
An important function of OLM is learning new examples. If OLM cannot find a known object matching 
(fully or partially) a new example, it will prompt the user on this example. It may be considered as an 
important example to be added to the knowledge base. At this stage, the process of  inserting a new 
example is carried out by the user. 

 
5. Case Study: Computer Performance 
The following case study illustrates how the reasoning by analogy technique can be applied to a 
classification of examples taken from several runs of a computer performance modeling package. The 
input data to each run is a hypothetical configuration of a computer system. It consists of a workload 
model and a system model.  Defining a computer system model is typically  straightforward, since the 
computer resources correspond directly to the queuing centers. However, to define a workload model, the 
workload intensity has to be established. This intensity has two aspects: selecting an appropriate workload 
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type (transaction, batch, or terminal) and setting the appropriate workload intensity parameters for that 
type. A workload type may consist of multiple classes. 

The outputs of a computer package are the values of a computer performance indexes (throughput, 
response time, utilization, etc.). 

The modeling package used for this purpose is a queuing model with multiple classes [3].  
As previously mentioned, each example (which is an output of the modeling package) is represented 

as a frame which refers to its associated input. At present, 30 different examples have been classified and 
implemented for testing the system. By analogy to the classification scheme of the animals that has been 
used in this work, a simple method has been adopted for the classification of these examples. This 
classification is based on whether the system can be described by one or more of the following states: 
CPU-bound, I/O-bound, over utilized, underutilized, unbalanced, unacceptable response time, acceptable 
performance, etc. Some of these collected examples are shown in table 2. 

The procedural attachment "generate-analysis" to the above frames uses the following template in 
order to produce a summary analysis for each frame (example) [5]. 

 
(analysis                               
  (The important lesson from this run is: 
  (<d1,1><d1,2> . . . <d1,n>)); diagnostic clauses level 1 
  (Possible courses of action of action to resolve this problem are:  
   (<a1,1><a1,2> . . . <a1,n>)) ; actions level 1 

{((In addition, it is advisable to 
 (<a2,1><a2,2> . . . <a2,n>)) or ; actions level 2 
 (In addition, it is possible to get even better performance if you 
  (<a3,1><a3,2>  . . . <a3,n>)))  ; actions level 3 
    (Because 
  (<d2,1><d2,2> .. d2,n>)));diagnostic clauses level 2 
where di,1, di,2, . . ., di,n are diagnostic clauses, and ai,1, ai,2, . . ., ai,n are their associated actions. They are arranged 

according to their importance level. For instance, the clauses at level 1 are more important than the clauses at level 
2. 

 
((Example-3 
    (a-kind-of (value computer_system)) 
    (has-prop (value CPU disk-1 disk-2 disk-3)) 
    (unusual-prop (if-needed obtain-unusual))  
    (important-prop (if-needed obtain-important))           
    (throughput (value 1200 TX/HR)) 
    (uti-CPU (value 0.70)) 
    (uti-disk-1 (value  0.34)) 
    (uti-disk-2 (value 0.12)) 
     (uti-disk-3  (value 0.20)) 
     (analysis (if-needed generate-analysis))) 
 
Figure 8 - Frames representing some examples of computer performance. 
 
Suppose that Example-3 is entered as a new input to the system. Following the reasoning process 

described in section 3 and section 6, the system selects object 2 from table 2 as the best candidate that 
matches with Example-3. Consequently, the following analysis will be generated and displayed to the 
user. 

 
(analysis-2 (The important lesson from this run is that: (The system is CPU bound)) 
   (Possible courses of action to resolve this problem are: 
   (You are advised to replace some jobs or programs that need high CPU time with other 
       jobs or programs that need nothing but I/O) 
   (Rewrite the programs in more efficient ways) 
   (Redistribute the jobs to run in another period)) 
   (In addition it is possible to get better performance if you: 
      (Balance the load on I/O store devices)) 
       (Because  (The load on I/O store devices is unbalanced))) 
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6. Conclusion 
This work provided further support for the idea of having a database of historical objects along with their 
analysis, assessment of others are achieved using analogical reasoning. The results given above have been 
produced utilizing knowledge-based approach, which is implemented by using object oriented 
methodology. This work aims to demonstrate the use of analogical reasoning for studying computer 
performance problems, which si ill-structured problem. This and similar types of automation have been 
considered essential for solving these problems. Analogical reasoning systems have the advantages of 
being simple and modular. In particular, adding or removing a new object does not affect the available 
objects in the database. The modularity of these systems enables performance management automation 
that is custom tailored by end-users based on their own experience. 
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