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Abstract: - Graph rewriting-based model processing is a widely used technique for model transformation. 
Model transformations often need to follow an algorithm that requires a strict control over the execution 
sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of 
the transformation steps is crucial. This paper introduces the visual control flow support of Visual Modeling 
and Transformation System (VMTS). VMTS Visual Control Flow Language (VCFL) uses stereotyped activity 
diagrams to specify control flow structures and Object Constraint Language (OCL) constraints to choose 
between different control flow branches. This work discusses the termination properties of VCFL and provides 
algorithms to combine model transformation steps as well as to support the termination analysis of VCFL 
transformations. 
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1   Introduction 
Visual Modeling and Transformation System 
(VMTS) [1] [2] is an n-layer metamodeling 
environment which supports editing models 
according to their metamodels, and allows 
specifying OCL constraints. Models and 
transformation steps are formalized as directed, 
labeled graphs. VMTS uses a simplified class 
diagram for its root metamodel (“visual 
vocabulary”). 
     Also, VMTS is an UML-based [3] model 
transformation system, which transforms models 
using graph rewriting techniques. Moreover, the tool 
facilitates the verification of the constraints 
specified in the transformation step during the model 
transformation process. 
     Graph rewriting [4] is a powerful technique for 
graph transformation with a formal background. The 
atoms of the graph transformation are rewriting 
rules, each rewriting rule consists of a left-hand side 
graph (LHS) and a right-hand side graph (RHS). 
Applying a graph rewriting rule means finding an 
isomorphic occurrence (match) of LHS in the graph 
to which the rule is applied (host graph), and 
replacing this subgraph with RHS. 
     Model transformation means converting an input 
model available at the beginning of the 
transformation process to an output model. Several 
widely used approaches to model transformation 
uses graph rewriting as the underlying 
transformation technique. Previous work [1] has 
introduced an approach – metamodel-based 
rewriting rules –, where the LHS and RHS of the 

transformation steps are built from metamodel 
elements. This means that an instantiation of LHS 
must be found in the host graph instead of the 
subgraph isomorphic to LHS. This metamodel-based 
approach facilitates to assign OCL constraints to 
pattern rule nodes (PRNs) – nodes of the rules. 
     The Object Constraint Language (OCL) [5] is a 
formal language for the analysis and design of 
software systems. It is a subset of the UML standard 
[3] that allows software developers to write 
constraints and queries over object models.  
     The motivation of the work presented in this 
paper is to support control flow in visual model 
transformation systems and to define the conditions 
exactly which guarantee that if a transformation 
fulfills them it terminates or not. An algorithm is 
developed to support the termination analysis of 
VCFL transformations.  
 

 

2   Related Work 
Many approaches have been introduced in the field 
of graph grammars and transformations to capture 
graph domains; for instance, the GReAT [6], the 
PROGRES [7], the FUJABA [8], the VIATRA [9], 
the Attributed Graph Grammar (AGG) [10] and the 
AToM3 [11]. These approaches are specific to the 
particular system, and each of them has some 
features that others do not offer. 
     The GReAT framework is a transformation 
system for domain specific languages (DSL) built on 
metamodeling and graph rewriting concepts. The 
control structure of the GReAT allows specifying an 
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initial context for the matching to reduce the 
complexity of the general matching case. The 
attribute transformation is specified by an attribute 
mapping language, whose syntax is close to C. 
     PROGRES is a visual programming language in 
the sense that it has a graph-oriented data model and 
a graphical syntax. PROGRES provides constructs 
for rule firing and for sequencing the rules. 
PROGRES offers refined control structures; both 
imperative and declarative approaches can be used. 
     In FUJABA the combination of activity diagrams 
and collaboration diagrams (story-diagrams) are 
used to express control structures. 
     VIATRA (Visual Automated Transformations) is 
a model transformation framework developed 
mainly for the formal dependability analysis of 
UML models. VIATRA uses abstract state machines 
(ASM) to define the attribute transformation and the 
control flow of the system. 
     In AGG, termination criteria are implemented for 
Layered Graph Transformation Systems. The 
criteria they propose are based on assigning a layer 
to each rule, node and edge type. For termination, 
they define layered graph grammars with deletion 
and non-deletion layers. Termination criteria are 
expressed by deletion and non-deletion layer 
conditions.  
     The transformation and simulation tool AToM3 
uses model transformation to simulation traces in 
order to simulate the operations. Similarly to AGG, 
the control flow consists of layers; the rules are 
sequenced by priority numbers within the layers. 
 
 

3 The VMTS Visual Control Flow 

Language 
One of the most important capabilities of a control 
flow language is the possibility to express a 
transformation as an ordered sequence of the 
transformation steps. Classical graph grammars 
apply any production that is feasible. This technique 
is appropriate for generating and matching 
languages but model-to-model transformations often 
need to follow an algorithm that requires a more 
strict control over the execution sequence of the 
steps, with the additional benefit of making the 
implementation more efficient.  
     The VMTS approach is a visual approach and it 
also uses graphical notation for control flow: 
stereotyped activity diagrams, which is a technique 
to describe procedural logic. UML activity diagrams 
are intended to describe business processes, and 
work flows. 

     In VMTS transformation steps the internal 
causality is a relation between LHS and RHS 
elements, it makes possible to connect an LHS 
element to an RHS element and to assign an 
operation to this connection. An internal causality 
describes what we have to do during applying a 
transformation step (element creation, element 
deletion, attribute modification). The create and 
modify operations are accomplished by XSL scripts. 
The XSL scripts can access the attributes of the 
objects matched to LHS elements, and they produce 
a set of attributes for RHS element to which the 
causality point.  
     Sequencing transformation steps results in a 
transformation which contains the steps in an 
ordered sequence (S0, S1… Sn-1). Assume the case that 
the input model of the step i (Si) is the model Mi and 
the result of the Si is the Mi+1 (where 0 ≤  i ≤ n-1). In 
this case the input model of the step i+1 (Si+1) is the 
model Mi+1. This means that during the execution of 
the step sequence, each step works on the result of 
the previous step. 
     The interface of the transformation steps allows 
the output of one step to be the input of another step, 
in a dataflow-like manner. This is used to sequence 
expression execution. In VCFL this construction is 
referred to as external causality. An external 
causality creates a linkage between a node contained 
by RHS of the step i and a node contained by LHS 
of the step i+1. This feature accelerates the 
matching and reduces the complexity, because the 
step i provides partial match to the step i+1. 
     Branching with OCL Constraints. Often, the 
transformation we would like to apply depends on a 
condition. Therefore, a branching construct is 
required. In VCFL, OCL constraints assigned to the 
decision elements can choose between the paths of 
optional numbers, based on the properties of the 
actual host model and the success of the last 
transformation step (SystemLastRuleSucceed). 
     Hierarchical Steps. The VCFL supports 
hierarchical specification of the transformation 
steps. High-level steps can be created by composing 
a sequence of primitive steps and can be viewed as 
separate transformation modules. A high-level step 
can contain several simple steps, hiding the details 
which could be unimportant on a specific abstraction 
level and represents the contained steps as coherent 
units. 
     Iteration (Tail Recursion) and Parallel 
Executions of the Steps. The iteration is achieved 
with the help of the decision objects and the OCL 
constraints contained by them. A decision object 
evaluates the assigned constraints, and based on the 
results selects a flow edge which could be a follow-
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up or a backward edge as well. Recursion can be 
solved with the combination of the iteration and 
external causalities. A high-level step can call itself, 
where external causalities represent the actual 
parameters of the recursive call. The parallel 
execution of the independent transformation steps is 
supported by the Fork and Join elements. 
     In VCFL, if a transformation step fails and the 
next element in the control flow is a decision object, 
it could provide the next branch based on the OCL 
statements and the value of the 
SystemLastRuleSucceed variable. If no decisions can 
be found, the control is transferred to the parent 
state, if there is no parent state, the transformation 
terminates with error. 
 

 

4   Termination Criteria 
The termination properties of a transformation are 
really important for model transformation. We want 
to investigate under which conditions an arbitrary 
VCFL transformation can satisfy termination 
criteria. Our aim is that VCFL transformations 
terminate, therefore an algorithm (VCFL 
Termination Algorithm) has been developed to 
support the early detection of the infinite loops and 
the validation of the control flow that from each step 
can reach an end step. 
     In the VCFL a transformation step has two 
specific attributes: Exhaustive and MultipleMatch 
[12]. Recall that applying a model transformation 
step means finding a match of LHS in the host 
model and replacing this subgraph with RHS. An 
exhaustive transformation step is executed 
continuously as long as LHS of the step can be 
matched to the host model. The MultipleMatch 
attribute of a step allows that the matching process 
finds not only one but all occurrence of LHS in the 
host model, and the replacing is executed on all the 
found places. 
     Definition (VCFL Transformation). A VCFL 
transformation is a stereotyped UML activity 
diagram. A VCFL transformation T defines a strict 
order of the contained transformation steps 

TSTEPS...SS,S 1-n10 ∈∈ , where S0 is the start step 

of T. Transformation T contains OCL constraints 
assigned to decision objects to choose between 
different control flow branches, and external 
causalities between transformation steps to support 
parameter passing. 
     Definition (Termination of VCFL 

transformations). A VCFL transformation T for a 
finite input model G0 terminates, if there is no 
infinite derivation sequence from G0 via 

transformation steps TSTEPS ∈ , where starting 
from S0 (start step of the T) steps STEPS  are 
applied as it is defined by the transformation T. 
     For non-exhaustive and also for exhaustive 
transformation steps, the MultipleMatch attribute of 
the steps does not modify the termination property 
of the VCFL control flows for arbitrary finite input 
model G0. 
     The termination checker algorithm differentiates 
between certain cases. It needs to take into account 
whether the VCFL transformation contains loops 
with decision object or exhaustive transformation 
steps. 
 
4.1 VCFL Control Flows with Non-

Exhaustive Transformation Steps 
Proposition. A VCFL transformation T, which 
contains only non-exhaustive transformation steps 

)( 1-n10 ...SS,S and does not contain loops for an 

arbitrary finite input model G0 always terminates. 
     Proof. The transformation T contains finite 
number of transformation steps 

)( ∞<∧= nSTEPS#n . 1-ni 0 |i ≤≤∀  STEPSS i ∈  

is executed at the most once because it is a non-
exhaustive step. 
     If the multiple match attribute of a step 

STEPSS i ∈  is true, all occurrence of the Si
LHS (LHS 

of the step Si) is searched for, and the replacement is 
executed for all the found matches, but step Si is 
executed only once. The number of the found 
matches (mi) is also finite because of the finite input 
model G0. 1-ni 0 |m  n i ≤≤∞<∧∞< , therefore 

∞<=∑
−

=

1n

0i

imk . The number of the steps executed by 

transformation T is finite and T terminates.  
 

4.2 VCFL Control Flows with Exhaustive 

Transformation Steps 
Definition (⊆ ).

nm GG ⊆  if and only if Gn has a 

structurally isomorphic subgraph GI to Gm, and in 
the GI and in the Gm the corresponding nodes and 
edges have the same metatype, attributes, attribute 
values and OCL constraints. 
     An exhaustive transformation step must contain 
either attribute modification or element deletion to 
prevent that the same match be found again and 
again by the matching process. A solution can also 
be found if there is a causality of type create, and an 
OCL constraint that holds before the transformation 
step becomes false afterwards, therefore it prevents 
to find the same match again on the same place. 
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     Definition (Create Termination Step – CT step). 
A create termination step S has only create type 
internal causalities, it contains an arbitrary OCL 
constraint C1 in S

LHS, which must stand for the host 
models matched to the SLHS, and as a result of the 
step execution, the condition required by the 
constraint C1 becomes false. 
     Obviously, this transformation step property is 
important only for exhaustive steps or steps which 
are in loops. 
     Following propositions contain statements about 
termination properties of the transformations with 
exhaustive transformation steps. 
     Proposition. Let the transformation step Si be an 

exhaustive step. If RHS

i

LHS

i SS ⊆ and the step Si has 

a match M on an arbitrary input model Gi the step Si 
never terminates for the input model Gi. 
     Proof. The step Si has a match M on the input 
model Gi it generates its output (Gi

1) with Si
RHS. 

RHS

i

LHS

i SS ⊆ , therefore Si
LHS has match in Gi

1. The 

step Si is an exhaustive step and it always has match 
on the result model of the previous iteration, 
therefore the Si never terminates for the input model 
Gi. 
     Proposition. Let the transformation step Si be an 
exhaustive step which does not contain internal 
causalities of deletion and modification type, and Si 
is not a CT step. Assume that T is a transformation 
and TS i ∈ , the input model of transformation T is 

the model G0, and the input model of the step Si is 
the model Gi. If the Si

LHS has a match M on model Gi, 
the transformation T never terminates for the input 
model G0. 
     Proof. The step Si is an exhaustive transformation 
step, it is executed as long as the Si

LHS has match on 
model Gi. The Si has a match M, which is not 
modified by the step – there is no deletion, attribute 
modification, and Si is not a CT step –, therefore the 
matching process finds the match M in each 
iteration. The step Si never terminates for the input 
model Gi, and T never terminates for the input 
model G0. 
 

4.3 Transformation Step Combination in 

VMTS 
The intention of the transformation step combination 
is to create a single step SC from an optional number 
of transformation steps k1jj ...SS,S +

. The combined 

step can equivalently replace the original steps, 
because it produces the same result and imposes the 
same input conditions as the sequence composed of 
individual rules. In the termination analysis, we can 
use the combined step instead of the original 

transformation steps. It facilitates to replace the 
steps contained by a VCFL loop with their 
combined transformation step. The result of the 
replacement is similar to an exhaustive 
transformation step, with the difference that a 
combined step may have a decision object. 
     The combination algorithm takes not only the 
structure of the steps into consideration but also the 
external- and internal causalities, the metatypes of 
the PRNs and edges and the constraints contained by 
PRNs.  
     The external causalities defined between the 
steps simplify the complexity of the step 
combination. They define exactly the mapping 
between the RHS elements of the step i and the LHS 
elements of the step i+1. There cannot be any 
contradiction between the constraints contained by 
the PRNs mapped to each other based on the 
parameter passing specifications, because they are 
checked during the control flow design.  
     Internal causalities connect the LHS and RHS 
elements within a transformation step. Therefore, 
taking both the internal- and external causalities into 
account, we can follow the node mapping between 
the transformation steps and also within them. This 
means that the PRNs can be unambiguously 
identified and followed through a loop or a whole 
transformation.  
     The metatypes of the PRNs and edges, compared 
to the general case, also simplify the computation 
complexity of the algorithm. The metatypes narrows 
the problem area. The worst case is, when all the 
PRNs have the same metatype. It is equal with the 
general case of the rule combination. External 
causalities provide an initial mapping, which should 
be extended based on the metatype-based mapping. 
All possible cases and combinations should be 
examined and considered as a possible mapping. If 
there is no external causality defined, the algorithm 
starts form a node with metatype which has the 
fewest occurrences in the LHS of the transformation 
step. 
     The constraints propagated to the PRNs should 
be checked whether there is any contradiction 
between the constraints contained by the PRNs 
mapped to each other during the combination. 
     The algorithm works based on the double 
pushout (DPO) approach concurrency theorem [13]. 
     The VMTS Transformation Steps Combinator 
(VTSC) algorithm is as follows. 
 
VTSCOMBINATOR(TransformationStep[] TSs, bool exhaustive): 
TransformationStep[] 
  1 combinationList = GETFIRSTSTEP(TSs) 
  2 if exhaustive 
  3 return COMBINERECURSIVELY(GETFIRSTSTEP(TSs) 
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  4 else 
  5    foreach Transformation Step stepNext  in TSs (except first step) 
  6       foreach Transformation Step S in combinationList 
  7          initialMapping = CREATEMAPPINGBYEXTCAUS(S, stepNext) 
  8          newCombinations = EXTENDMAPPINGBYMETATYPES(  
    initialMapping, S, stepNext) 
  9          ADDTOLIST(newCombinationList, newCombinations) 
10       end foreach  
11       combinationList = newCombinationList 
12    end foreach 
13 end if  
14 return combinationList 

 
     Proposition. If the transformation steps 

k1jj ...SS,S +
 are applicable successfully for an 

input model G0, then a transformation step SC, 
created from transformation steps 

k1jj ...SS,S +
 

using VTSC algorithm, has the same effect on the 
input model G0 as the transformation steps 

k1jj ...SS,S +
. 

     Proof. If the transformation steps k1jj ...SS,S +
 

are applicable successfully for an input model G0, 
then it means that the step Sj can be executed on the 
model G0 and produces the model Gj, the step Sj+1 
can be executed on the model Gj and produces the 
model Gj+1, and so on. Each step can be applied on 
the result of the previous step, and finally, the steps 

k1jj ...SS,S +
 produce the model Gj+k. The step SC 

produces the same result on the input model G0 as 
the transformation steps 

k1jj ...SS,S +
, because step 

SC is created considering all the modifications 
committed by steps k1jj ...SS,S +

. Therefore step SC 

executes all the modifications of steps k1jj ...SS,S +
 

in a single step. 
 

4.4 Termination Properties of VCFL Loops 
A loop contains n transformation steps (where n>0) 
and a decision object. A decision object evaluates 
the assigned constraints on the actual host model 
and based on the results selects a flow edge which 
could be a follow-up or a backward edge as well. 
     Proposition. Assume that the transformation T 
contains a loop L, let SC be the only possible 
combination of the non-exhaustive transformation 
steps L...SS,S k1jj ∈+

. The input model of the 

transformation T is the model G0, and the input 
model of the step SC is the model GC. If 

RHS

C

LHS

C SS ⊆  and the step SC has a match M on 

input model GC the transformation T never 
terminates for the input model G0. 
     Proof. The transformation step SC has a match M 
on input model GC it generates its output model 

1

C

RHS

C

1

C GSG ⊆| . RHS

C

LHS

C SS ⊆ , therefore the SC
LHS 

has match on model 1

CG . The step SC represents a 

loop and it always has match on the result model of 
the previous iteration, therefore the SC never 
terminates for the input model GC and the 
transformation T never terminates for the input 
model G0. 

 
4.5 VCFL Termination Algorithm 
For an arbitrary VCFL transformation T the 
termination algorithm validates the following. 
1) If transformation T does not contain loop or 

exhaustive transformation step then T 
terminates. 

2) If TS ∈  is an exhaustive transformation step 
and RHSLHS SS ⊆  the transformation T does 

not terminate. 
3) If TS ∈  is an exhaustive transformation step, S 

does not contain delete and modify type 
internal causalities and S is not a CT step then 
the transformation T does not terminate. 

4) If TL∈  is a loop and SC is the combination of 
the transformation steps L...SS,S k1hh ∈+

 and 
RHS

C

LHS

C SS ⊆  the transformation T does not 

terminate. 
     The pseudo code of the VCFL termination 
algorithm is the following. 
 
VCFLTERMINATIONALGORITHM(Transformation T): retValue 
  1 if T does not contain loop or exhaustive step then return 
retValue.true 
  2 foreach Transformation Step S in T 
  3    if S is exhaustive and RHS of the S contains LHS of the S then 
return retValue.false 
  4    if S is exhaustive and S does not contain modify or deletion  and S 
is not an ST step then return retValue.false 
  5 end foreach 
  6 foreach Loop L in T 
  7    combinedStep = COMBINETRANSFORMATIONSTEPS(transformation 
steps of the L) 
  8    if RHS of the combinedStep contains LHS of the combinedStep 
then return retValue.false 
  9 end foreach 
10 return retValue.undecided 
 

     If the transformation step contains create type 
internal causality, the algorithm checks whether the 
host model with the newly added elements contains 
new possible match places. The algorithm takes the 
structure of the pattern, the metatypes of the nodes 
and edges, their attributes along with attribute values 
as well as the propagated OCL constraints into 
consideration. 
     VTA is an offline algorithm; the termination in 
many cases depends not only on the VCFL 
transformation model but also on the actual host 
model. A simple constraint can be itself a significant 
difference between two steps or an attribute value 
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between two models. The problem is not trivial. 
There are certain cases when the algorithm can 
make a decision based on the VCFL transformation, 
and there are other cases when not. 
 
4.6 Summary of the Termination Criteria 
Termination of transformations is not always 
guaranteed. If a control flow model contains an 
exhaustive step that can be applied infinitely to the 
result models, the transformation does not terminate. 
     All derivation sequences over transformation 
steps TSTEPS ∈  are terminating if each 
transformation step STEPSS ∈  terminate. Since 
the non-exhaustive termination steps terminate, we 
can state the following proposition. 
     Proposition. A VCFL transformation T 
terminates if all exhaustive transformation step 

STEPSSE ∈  and loop TL∈  terminate. 
 
 

5   Conclusion 
This paper has provided a control flow technique for 
model transformations based on graph rewriting. 
The transformations are represented in the form of 
explicitly sequenced transformation steps. We have 
shown the fundamental concepts of the VCFL 
approach. 
     Termination is an important issue for model 
transformations. Since model transformations can 
become very complex, we consider not only the 
application of single transformation steps, but also 
transformations where step applications are 
restricted according to a strict control flow. 
     In this work, we discussed the properties of the 
VMTS Visual Control Flow Language. We stated 
and proved several termination criteria for 
transformation steps, loops and transformations.  
     The introduced approach can be generalized to 
other control flow languages, which facilitate to 
assign constraints to transformation steps and 
supports constraint evaluation. 
     VCFL has successfully been applied in industrial 
projects, like generating user interface from resource 
model and user interface handler code from 
statechart model for Symbian [12] and .NET 
Compact Framework mobile platform [14]. 
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