
A Visual Control Flow Language

LÁSZLÓ LENGYEL, TIHAMÉR LEVENDOVSZKY, GERGELY MEZEI, HASSAN CHARAF
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Goldmann György tér 3, Budapest, H-1111
HUNGARY

{lengyel, tihamer, gmezei, hassan}@aut.bme.hu

Abstract: - Graph rewriting-based model processing is a widely used technique for model transformation.
Model transformations often need to follow an algorithm that requires a strict control over the execution
sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of
the transformation steps is crucial. This paper introduces the visual control flow support of Visual Modeling
and Transformation System (VMTS). VMTS Visual Control Flow Language (VCFL) uses stereotyped activity
diagrams to specify control flow structures and Object Constraint Language (OCL) constraints to choose
between different control flow branches. This work discusses the termination properties of VCFL and provides
algorithms to combine model transformation steps as well as to support the termination analysis of VCFL
transformations.

Key-Words: - Control Flow, Metamodel-Based Model Transformation, OCL, Termination Properties, UML.

1 Introduction
Visual Modeling and Transformation System
(VMTS) [1] [2] is an n-layer metamodeling
environment which supports editing models
according to their metamodels, and allows
specifying OCL constraints. Models and
transformation steps are formalized as directed,
labeled graphs. VMTS uses a simplified class
diagram for its root metamodel (“visual
vocabulary”).
 Also, VMTS is an UML-based [3] model
transformation system, which transforms models
using graph rewriting techniques. Moreover, the tool
facilitates the verification of the constraints
specified in the transformation step during the model
transformation process.
 Graph rewriting [4] is a powerful technique for
graph transformation with a formal background. The
atoms of the graph transformation are rewriting
rules, each rewriting rule consists of a left-hand side
graph (LHS) and a right-hand side graph (RHS).
Applying a graph rewriting rule means finding an
isomorphic occurrence (match) of LHS in the graph
to which the rule is applied (host graph), and
replacing this subgraph with RHS.
 Model transformation means converting an input
model available at the beginning of the
transformation process to an output model. Several
widely used approaches to model transformation
uses graph rewriting as the underlying
transformation technique. Previous work [1] has
introduced an approach – metamodel-based
rewriting rules –, where the LHS and RHS of the

transformation steps are built from metamodel
elements. This means that an instantiation of LHS
must be found in the host graph instead of the
subgraph isomorphic to LHS. This metamodel-based
approach facilitates to assign OCL constraints to
pattern rule nodes (PRNs) – nodes of the rules.
 The Object Constraint Language (OCL) [5] is a
formal language for the analysis and design of
software systems. It is a subset of the UML standard
[3] that allows software developers to write
constraints and queries over object models.
 The motivation of the work presented in this
paper is to support control flow in visual model
transformation systems and to define the conditions
exactly which guarantee that if a transformation
fulfills them it terminates or not. An algorithm is
developed to support the termination analysis of
VCFL transformations.

2 Related Work
Many approaches have been introduced in the field
of graph grammars and transformations to capture
graph domains; for instance, the GReAT [6], the
PROGRES [7], the FUJABA [8], the VIATRA [9],
the Attributed Graph Grammar (AGG) [10] and the
AToM3 [11]. These approaches are specific to the
particular system, and each of them has some
features that others do not offer.
 The GReAT framework is a transformation
system for domain specific languages (DSL) built on
metamodeling and graph rewriting concepts. The
control structure of the GReAT allows specifying an

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

initial context for the matching to reduce the
complexity of the general matching case. The
attribute transformation is specified by an attribute
mapping language, whose syntax is close to C.
 PROGRES is a visual programming language in
the sense that it has a graph-oriented data model and
a graphical syntax. PROGRES provides constructs
for rule firing and for sequencing the rules.
PROGRES offers refined control structures; both
imperative and declarative approaches can be used.
 In FUJABA the combination of activity diagrams
and collaboration diagrams (story-diagrams) are
used to express control structures.
 VIATRA (Visual Automated Transformations) is
a model transformation framework developed
mainly for the formal dependability analysis of
UML models. VIATRA uses abstract state machines
(ASM) to define the attribute transformation and the
control flow of the system.
 In AGG, termination criteria are implemented for
Layered Graph Transformation Systems. The
criteria they propose are based on assigning a layer
to each rule, node and edge type. For termination,
they define layered graph grammars with deletion
and non-deletion layers. Termination criteria are
expressed by deletion and non-deletion layer
conditions.
 The transformation and simulation tool AToM3
uses model transformation to simulation traces in
order to simulate the operations. Similarly to AGG,
the control flow consists of layers; the rules are
sequenced by priority numbers within the layers.

3 The VMTS Visual Control Flow

Language
One of the most important capabilities of a control
flow language is the possibility to express a
transformation as an ordered sequence of the
transformation steps. Classical graph grammars
apply any production that is feasible. This technique
is appropriate for generating and matching
languages but model-to-model transformations often
need to follow an algorithm that requires a more
strict control over the execution sequence of the
steps, with the additional benefit of making the
implementation more efficient.
 The VMTS approach is a visual approach and it
also uses graphical notation for control flow:
stereotyped activity diagrams, which is a technique
to describe procedural logic. UML activity diagrams
are intended to describe business processes, and
work flows.

 In VMTS transformation steps the internal
causality is a relation between LHS and RHS
elements, it makes possible to connect an LHS
element to an RHS element and to assign an
operation to this connection. An internal causality
describes what we have to do during applying a
transformation step (element creation, element
deletion, attribute modification). The create and
modify operations are accomplished by XSL scripts.
The XSL scripts can access the attributes of the
objects matched to LHS elements, and they produce
a set of attributes for RHS element to which the
causality point.
 Sequencing transformation steps results in a
transformation which contains the steps in an
ordered sequence (S0, S1… Sn-1). Assume the case that
the input model of the step i (Si) is the model Mi and
the result of the Si is the Mi+1 (where 0 ≤ i ≤ n-1). In
this case the input model of the step i+1 (Si+1) is the
model Mi+1. This means that during the execution of
the step sequence, each step works on the result of
the previous step.
 The interface of the transformation steps allows
the output of one step to be the input of another step,
in a dataflow-like manner. This is used to sequence
expression execution. In VCFL this construction is
referred to as external causality. An external
causality creates a linkage between a node contained
by RHS of the step i and a node contained by LHS
of the step i+1. This feature accelerates the
matching and reduces the complexity, because the
step i provides partial match to the step i+1.
 Branching with OCL Constraints. Often, the
transformation we would like to apply depends on a
condition. Therefore, a branching construct is
required. In VCFL, OCL constraints assigned to the
decision elements can choose between the paths of
optional numbers, based on the properties of the
actual host model and the success of the last
transformation step (SystemLastRuleSucceed).
 Hierarchical Steps. The VCFL supports
hierarchical specification of the transformation
steps. High-level steps can be created by composing
a sequence of primitive steps and can be viewed as
separate transformation modules. A high-level step
can contain several simple steps, hiding the details
which could be unimportant on a specific abstraction
level and represents the contained steps as coherent
units.
 Iteration (Tail Recursion) and Parallel
Executions of the Steps. The iteration is achieved
with the help of the decision objects and the OCL
constraints contained by them. A decision object
evaluates the assigned constraints, and based on the
results selects a flow edge which could be a follow-

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

up or a backward edge as well. Recursion can be
solved with the combination of the iteration and
external causalities. A high-level step can call itself,
where external causalities represent the actual
parameters of the recursive call. The parallel
execution of the independent transformation steps is
supported by the Fork and Join elements.
 In VCFL, if a transformation step fails and the
next element in the control flow is a decision object,
it could provide the next branch based on the OCL
statements and the value of the
SystemLastRuleSucceed variable. If no decisions can
be found, the control is transferred to the parent
state, if there is no parent state, the transformation
terminates with error.

4 Termination Criteria
The termination properties of a transformation are
really important for model transformation. We want
to investigate under which conditions an arbitrary
VCFL transformation can satisfy termination
criteria. Our aim is that VCFL transformations
terminate, therefore an algorithm (VCFL
Termination Algorithm) has been developed to
support the early detection of the infinite loops and
the validation of the control flow that from each step
can reach an end step.
 In the VCFL a transformation step has two
specific attributes: Exhaustive and MultipleMatch
[12]. Recall that applying a model transformation
step means finding a match of LHS in the host
model and replacing this subgraph with RHS. An
exhaustive transformation step is executed
continuously as long as LHS of the step can be
matched to the host model. The MultipleMatch
attribute of a step allows that the matching process
finds not only one but all occurrence of LHS in the
host model, and the replacing is executed on all the
found places.
 Definition (VCFL Transformation). A VCFL
transformation is a stereotyped UML activity
diagram. A VCFL transformation T defines a strict
order of the contained transformation steps

TSTEPS...SS,S 1-n10 ∈∈ , where S0 is the start step

of T. Transformation T contains OCL constraints
assigned to decision objects to choose between
different control flow branches, and external
causalities between transformation steps to support
parameter passing.
 Definition (Termination of VCFL

transformations). A VCFL transformation T for a
finite input model G0 terminates, if there is no
infinite derivation sequence from G0 via

transformation steps TSTEPS ∈ , where starting
from S0 (start step of the T) steps STEPS are
applied as it is defined by the transformation T.
 For non-exhaustive and also for exhaustive
transformation steps, the MultipleMatch attribute of
the steps does not modify the termination property
of the VCFL control flows for arbitrary finite input
model G0.
 The termination checker algorithm differentiates
between certain cases. It needs to take into account
whether the VCFL transformation contains loops
with decision object or exhaustive transformation
steps.

4.1 VCFL Control Flows with Non-

Exhaustive Transformation Steps
Proposition. A VCFL transformation T, which
contains only non-exhaustive transformation steps

)(1-n10 ...SS,S and does not contain loops for an

arbitrary finite input model G0 always terminates.
 Proof. The transformation T contains finite
number of transformation steps

)(∞<∧= nSTEPS#n . 1-ni 0 |i ≤≤∀ STEPSS i ∈

is executed at the most once because it is a non-
exhaustive step.
 If the multiple match attribute of a step

STEPSS i ∈ is true, all occurrence of the Si
LHS (LHS

of the step Si) is searched for, and the replacement is
executed for all the found matches, but step Si is
executed only once. The number of the found
matches (mi) is also finite because of the finite input
model G0. 1-ni 0 |m n i ≤≤∞<∧∞< , therefore

∞<=∑
−

=

1n

0i

imk . The number of the steps executed by

transformation T is finite and T terminates.

4.2 VCFL Control Flows with Exhaustive

Transformation Steps
Definition (⊆).

nm GG ⊆ if and only if Gn has a

structurally isomorphic subgraph GI to Gm, and in
the GI and in the Gm the corresponding nodes and
edges have the same metatype, attributes, attribute
values and OCL constraints.
 An exhaustive transformation step must contain
either attribute modification or element deletion to
prevent that the same match be found again and
again by the matching process. A solution can also
be found if there is a causality of type create, and an
OCL constraint that holds before the transformation
step becomes false afterwards, therefore it prevents
to find the same match again on the same place.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

 Definition (Create Termination Step – CT step).
A create termination step S has only create type
internal causalities, it contains an arbitrary OCL
constraint C1 in S

LHS, which must stand for the host
models matched to the SLHS, and as a result of the
step execution, the condition required by the
constraint C1 becomes false.
 Obviously, this transformation step property is
important only for exhaustive steps or steps which
are in loops.
 Following propositions contain statements about
termination properties of the transformations with
exhaustive transformation steps.
 Proposition. Let the transformation step Si be an

exhaustive step. If RHS

i

LHS

i SS ⊆ and the step Si has

a match M on an arbitrary input model Gi the step Si
never terminates for the input model Gi.
 Proof. The step Si has a match M on the input
model Gi it generates its output (Gi

1) with Si
RHS.

RHS

i

LHS

i SS ⊆ , therefore Si
LHS has match in Gi

1. The

step Si is an exhaustive step and it always has match
on the result model of the previous iteration,
therefore the Si never terminates for the input model
Gi.
 Proposition. Let the transformation step Si be an
exhaustive step which does not contain internal
causalities of deletion and modification type, and Si
is not a CT step. Assume that T is a transformation
and TS i ∈ , the input model of transformation T is

the model G0, and the input model of the step Si is
the model Gi. If the Si

LHS has a match M on model Gi,
the transformation T never terminates for the input
model G0.
 Proof. The step Si is an exhaustive transformation
step, it is executed as long as the Si

LHS has match on
model Gi. The Si has a match M, which is not
modified by the step – there is no deletion, attribute
modification, and Si is not a CT step –, therefore the
matching process finds the match M in each
iteration. The step Si never terminates for the input
model Gi, and T never terminates for the input
model G0.

4.3 Transformation Step Combination in

VMTS
The intention of the transformation step combination
is to create a single step SC from an optional number
of transformation steps k1jj ...SS,S +

. The combined

step can equivalently replace the original steps,
because it produces the same result and imposes the
same input conditions as the sequence composed of
individual rules. In the termination analysis, we can
use the combined step instead of the original

transformation steps. It facilitates to replace the
steps contained by a VCFL loop with their
combined transformation step. The result of the
replacement is similar to an exhaustive
transformation step, with the difference that a
combined step may have a decision object.
 The combination algorithm takes not only the
structure of the steps into consideration but also the
external- and internal causalities, the metatypes of
the PRNs and edges and the constraints contained by
PRNs.
 The external causalities defined between the
steps simplify the complexity of the step
combination. They define exactly the mapping
between the RHS elements of the step i and the LHS
elements of the step i+1. There cannot be any
contradiction between the constraints contained by
the PRNs mapped to each other based on the
parameter passing specifications, because they are
checked during the control flow design.
 Internal causalities connect the LHS and RHS
elements within a transformation step. Therefore,
taking both the internal- and external causalities into
account, we can follow the node mapping between
the transformation steps and also within them. This
means that the PRNs can be unambiguously
identified and followed through a loop or a whole
transformation.
 The metatypes of the PRNs and edges, compared
to the general case, also simplify the computation
complexity of the algorithm. The metatypes narrows
the problem area. The worst case is, when all the
PRNs have the same metatype. It is equal with the
general case of the rule combination. External
causalities provide an initial mapping, which should
be extended based on the metatype-based mapping.
All possible cases and combinations should be
examined and considered as a possible mapping. If
there is no external causality defined, the algorithm
starts form a node with metatype which has the
fewest occurrences in the LHS of the transformation
step.
 The constraints propagated to the PRNs should
be checked whether there is any contradiction
between the constraints contained by the PRNs
mapped to each other during the combination.
 The algorithm works based on the double
pushout (DPO) approach concurrency theorem [13].
 The VMTS Transformation Steps Combinator
(VTSC) algorithm is as follows.

VTSCOMBINATOR(TransformationStep[] TSs, bool exhaustive):
TransformationStep[]
 1 combinationList = GETFIRSTSTEP(TSs)
 2 if exhaustive
 3 return COMBINERECURSIVELY(GETFIRSTSTEP(TSs)

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

 4 else
 5 foreach Transformation Step stepNext in TSs (except first step)
 6 foreach Transformation Step S in combinationList
 7 initialMapping = CREATEMAPPINGBYEXTCAUS(S, stepNext)
 8 newCombinations = EXTENDMAPPINGBYMETATYPES(
 initialMapping, S, stepNext)
 9 ADDTOLIST(newCombinationList, newCombinations)
10 end foreach
11 combinationList = newCombinationList
12 end foreach
13 end if
14 return combinationList

 Proposition. If the transformation steps

k1jj ...SS,S +
 are applicable successfully for an

input model G0, then a transformation step SC,
created from transformation steps

k1jj ...SS,S +

using VTSC algorithm, has the same effect on the
input model G0 as the transformation steps

k1jj ...SS,S +
.

 Proof. If the transformation steps k1jj ...SS,S +

are applicable successfully for an input model G0,
then it means that the step Sj can be executed on the
model G0 and produces the model Gj, the step Sj+1
can be executed on the model Gj and produces the
model Gj+1, and so on. Each step can be applied on
the result of the previous step, and finally, the steps

k1jj ...SS,S +
 produce the model Gj+k. The step SC

produces the same result on the input model G0 as
the transformation steps

k1jj ...SS,S +
, because step

SC is created considering all the modifications
committed by steps k1jj ...SS,S +

. Therefore step SC

executes all the modifications of steps k1jj ...SS,S +

in a single step.

4.4 Termination Properties of VCFL Loops
A loop contains n transformation steps (where n>0)
and a decision object. A decision object evaluates
the assigned constraints on the actual host model
and based on the results selects a flow edge which
could be a follow-up or a backward edge as well.
 Proposition. Assume that the transformation T
contains a loop L, let SC be the only possible
combination of the non-exhaustive transformation
steps L...SS,S k1jj ∈+

. The input model of the

transformation T is the model G0, and the input
model of the step SC is the model GC. If

RHS

C

LHS

C SS ⊆ and the step SC has a match M on

input model GC the transformation T never
terminates for the input model G0.
 Proof. The transformation step SC has a match M
on input model GC it generates its output model

1

C

RHS

C

1

C GSG ⊆| . RHS

C

LHS

C SS ⊆ , therefore the SC
LHS

has match on model 1

CG . The step SC represents a

loop and it always has match on the result model of
the previous iteration, therefore the SC never
terminates for the input model GC and the
transformation T never terminates for the input
model G0.

4.5 VCFL Termination Algorithm
For an arbitrary VCFL transformation T the
termination algorithm validates the following.
1) If transformation T does not contain loop or

exhaustive transformation step then T
terminates.

2) If TS ∈ is an exhaustive transformation step
and RHSLHS SS ⊆ the transformation T does

not terminate.
3) If TS ∈ is an exhaustive transformation step, S

does not contain delete and modify type
internal causalities and S is not a CT step then
the transformation T does not terminate.

4) If TL∈ is a loop and SC is the combination of
the transformation steps L...SS,S k1hh ∈+

 and
RHS

C

LHS

C SS ⊆ the transformation T does not

terminate.
 The pseudo code of the VCFL termination
algorithm is the following.

VCFLTERMINATIONALGORITHM(Transformation T): retValue
 1 if T does not contain loop or exhaustive step then return
retValue.true
 2 foreach Transformation Step S in T
 3 if S is exhaustive and RHS of the S contains LHS of the S then
return retValue.false
 4 if S is exhaustive and S does not contain modify or deletion and S
is not an ST step then return retValue.false
 5 end foreach
 6 foreach Loop L in T
 7 combinedStep = COMBINETRANSFORMATIONSTEPS(transformation
steps of the L)
 8 if RHS of the combinedStep contains LHS of the combinedStep
then return retValue.false
 9 end foreach
10 return retValue.undecided

 If the transformation step contains create type
internal causality, the algorithm checks whether the
host model with the newly added elements contains
new possible match places. The algorithm takes the
structure of the pattern, the metatypes of the nodes
and edges, their attributes along with attribute values
as well as the propagated OCL constraints into
consideration.
 VTA is an offline algorithm; the termination in
many cases depends not only on the VCFL
transformation model but also on the actual host
model. A simple constraint can be itself a significant
difference between two steps or an attribute value

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

between two models. The problem is not trivial.
There are certain cases when the algorithm can
make a decision based on the VCFL transformation,
and there are other cases when not.

4.6 Summary of the Termination Criteria
Termination of transformations is not always
guaranteed. If a control flow model contains an
exhaustive step that can be applied infinitely to the
result models, the transformation does not terminate.
 All derivation sequences over transformation
steps TSTEPS ∈ are terminating if each
transformation step STEPSS ∈ terminate. Since
the non-exhaustive termination steps terminate, we
can state the following proposition.
 Proposition. A VCFL transformation T
terminates if all exhaustive transformation step

STEPSSE ∈ and loop TL∈ terminate.

5 Conclusion
This paper has provided a control flow technique for
model transformations based on graph rewriting.
The transformations are represented in the form of
explicitly sequenced transformation steps. We have
shown the fundamental concepts of the VCFL
approach.
 Termination is an important issue for model
transformations. Since model transformations can
become very complex, we consider not only the
application of single transformation steps, but also
transformations where step applications are
restricted according to a strict control flow.
 In this work, we discussed the properties of the
VMTS Visual Control Flow Language. We stated
and proved several termination criteria for
transformation steps, loops and transformations.
 The introduced approach can be generalized to
other control flow languages, which facilitate to
assign constraints to transformation steps and
supports constraint evaluation.
 VCFL has successfully been applied in industrial
projects, like generating user interface from resource
model and user interface handler code from
statechart model for Symbian [12] and .NET
Compact Framework mobile platform [14].

6 Acknowledgement
The fund of “Mobile Innovation Centre” has
supported in part, the activities described in this
paper.

References:

[1] T. Levendovszky, L. Lengyel, G. Mezei, H.
Charaf, A Systematic Approach to
Metamodeling Environments and Model
Transformation Systems in VMTS, ENTCS,
International Workshop on Graph-Based Tools,

GraBaTs, Rome, 2004.
[2] The VMTS Homepage.

http://avalon.aut.bme.hu/~tihamer/research/vmt
[3] OMG UML 2.0 Spec., http://www.omg.org/uml/
[4] G. Rozenberg (ed.), Handbook on Graph
Grammars and Computing by Graph

Transformation: Foundations, Vol.1 World
Scientific, Singapore, 1997.

[5] OMG Object Constraint Language Specification
(OCL), www.omg.org

[6] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, On
the Use of Graph Transformation in the Formal
Specification of Model Interpreters, Journal of
Universal Computer Science, 2003.

[7] A. Schürr, A. Zündorf, Nondeterministic Control
Structures for Graph Rewriting Systems, in Proc.
WG'91 Workshop in Graph- Theoretic Concepts

in Computer Science, LNCS 570, 1992.
[8] FUJABA, http://wwwcs.upb.de/cs/fujaba/
[9] D. Varró and A. Pataricza, VPM: A visual,

precise and multilevel metamodeling framework
for describing mathematical domains and UML,
Journal of Software and Systems Modeling,
2003.

[10] G. Taentzer, AGG: A Graph Transformation
Environment for Modeling and Validation of
Software, Application of Graph Transformations
with Industrial Relevance (AGTIVE’03), vol.
3062. Springer LNCS, 2004.

[11] J. Lara, H. Vangheluwe , M. Alfonseca, Meta-
modelling and graph grammars for multi-
paradigm modelling in AToM, Software and
Systems Modeling (SoSyM), 3(3):194-209, 2004.

[12] L. Lengyel, T. Levendovszky, G. Mezei, B.
Forstner, H. Charaf, Metamodel-Based Model
Transformation with Aspect-Oriented
Constraints, International Workshop on Graph
and Model Transformation, GraMoT, Tallinn,
Estonia, September 28, 2005.

[13] H. Ehrig, Introduction to the Algebraic Theory
of Graph Grammars, In:Graph Grammars and
Their Applications to Computer Science and

Biology, Springer, Ed. V. Claus, H. Ehrig, G.
Rozemberg, Berlin, 1979.

[14] L. Lengyel, T. Levendovszky, H. Charaf,
Implementing an OCL Compiler for .NET, In
Proceedings of the 3rd International Conference

on .NET Technologies, Pilsen, Czech Republic,
May-June 2005, pp. 121-130.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp30-35)

