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1. Introduction 
 
The automatic generation of musical compositions 
is a long standing, multi disciplinary area of 
interest and research in computer science, with 
over thirty years history at its back [1-7].  
 
In a previous paper [8] we proposed the use of the 
well-known normalized compression distance    
[9-11] as a fitness function which may be used by 
genetic algorithms to automatically generate 
music in a given pre-defined style. The superiority 
of the relative pitch envelope over other musical 
parameters, such as the lengths of the notes, has 
been confirmed, bringing us to develop a 
simplified algorithm that nevertheless obtains 
interesting results.  
 
In this paper we start on the results of the previous 
work and refine them, trying to increase the 
efficiency of the procedures described in the 
above mentioned paper. 
 

This paper is organized in the following way: the 
second section, describes the genetic algorithm we 
have used for music generation. In the third 
section we present in detail our experiments, 
where we have compared the use of four different 
recombination procedures for the genetic 
algorithm. In the fourth section we explain why a 
procedure which has been used successfully in 
other kinds of experiments to improve 
performance is not indicated in this case. Finally, 
the last section presents our conclusions and 
possibilities for future work. 
 
2. A genetic algorithm that generates 

music 
 
Our genetic algorithm generates music coded as 
pairs of integers, the first element in the pair 
representing the pitch of a note and the second its 
length. This notation can then be transformed to a 
note string for reproduction. In this first set of 
experiments, the genetic algorithm is applied only 
to the relative pitches of the notes in the melody.  
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The proposed genetic algorithm scheme is 
described below.  
 
0. A previous pre-process step: 

• Select one or more musical pieces as targets 
or guides for music generation. 

N

i }{ω=Ω 1  

All the ωi must be coded in the same way, 
as pairs of integers as described above. 

• Code the individuals in the population with 
the same coding system as the guides. 

• Use the following fitness function: 
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Where ( )yx,d̂  is the normalized compression 

distance which was defined in [8]. We expect 

that, by maximizing f x  (minimizing the 
sum of the distances), we will maximize the 
number of features shared by the evolving 
individuals with the guide set. For example, if 

 were the set of Mozart's symphonies, an 
individual with a high fitness should resemble 
a Mozart symphony. 
 

1. The program generates a random population of 
64 vectors of N pairs of integers. We are 
currently using for N the length of the first 
piece of music in the guide set. The first 
integer in each pair is in the [24,48] interval, 
the second in the [1,16] interval. Each vector 
represents a genotype. 

 
2. The fitness of every genotype is computed as 

the distance to the guide set, measured by 
means of the normalized compression distance. 

 
3. The 64 genotypes are ordered by their 

increasing distance to the guide set.  
 
4. If the lowest distance is less or equal to the 

goal distance, the program stops and returns 
the notes in the corresponding genotype, paired 
with a function of the lengths of the guide 
piece(s) of music. 

 
5. From the ordered list of 64 genotypes created 

in step 4, the 16 genotypes with least 
fitness/highest distance are removed (leaving 
48), while the 16 genotypes with most 

fitness/lowest distance are selected. These 16 
genotypes are paired randomly to make 8 pairs. 
Each pair generates another pair, a copy of 
their parents, modified according to four 
genetic operations. The new 16 genotypes are 
added to the remaining population of 48, to 
make again 64, and their fitness is computed as 
in step 2.  

 
6. Go to step 3.  
 
The four genetic operations mentioned in the 
algorithm are:  
 
• Recombination (applied to 100% generated 

genotypes). The genotypes of both parents are 
combined using different procedures to 
generate the genotypes of the progeny. 
Different recombination procedures have been 
tested in this set of experiments to find the best 
combination. 

 
• Mutation (one mutation was applied to every 

generated genotype, although this rate may be 
modified in different experiments). It consists 
of replacing a random element of the vector by 
a random integer in the same interval.  

 
• Fusion (applied to a certain percentage of the 

generated genotypes, which in our experiments 
was varied between 5 and 10). The genotype is 
replaced by a catenation of itself with a piece 
randomly broken from either itself or its 
brother’s genotype.  

 
• Elision (applied to a certain percentage of the 

generated genotypes, in our experiments 
between 2 and 5). One integer in the vector (in 
a random position) is eliminated.  

 
The last two operations, together with some 
recombination procedures, allow longer or shorter 
genotypes to be obtained from the original N 
element vectors.  
 
3. Testing different recombination 

procedures 

 
In this set of experiments, we tested the effect of 
changing the recombination procedure used by the 
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genetic algorithm. The following strategies were 
used: 
• Strategy 1: given a pair of genotypes, (x1, x2 ... 

xn) and (y1, y2 ... ym), a random integer is 
generated in the interval [0, mín(n,m)]. Let it 
be i. The resulting recombined genotypes are: 
(x1, x2 ... xi-1, yi, yi+1 ... ym) and (y1, y2 ... yi-1, xi, 
xi+1 ... xn). This is the base case (the simplest 
recombination strategy). 

 
• Strategy 2: given a pair of genotypes, (x1, x2 ... 

xn) and (y1, y2 ... ym), two random integers are 
generated in the interval [0, n] (let us call them 
i, j, i<j) and another two in the interval [0,m] 
(let us call them p, q). The resulting 
recombined genotypes are: (x1, x2 ... xi-1, yp, 
yp+1 ... yq-1, xj, xj+1 … xn) and (y1, y2 ... yp-1, xi, 
xi+1 ... xj-1,  yq, yq+1 ... ym). 

 
• Strategy 3: given a pair of genotypes, (x1, x2 ... 

xn) and (y1, y2 ... ym), four random ordered 
integers are generated in the interval [0, n] for 
each parent genotype. Each genotype is then 
cut into the five corresponding pieces, which 
are shuffled together (one of them is reversed). 
The genotypes of the progeny are obtained by 
concatenating five of the pieces in the shuffled 
set.  

 
• Strategy 4: similar to the preceding one, but 

only three random ordered integers are used to 
divide the parent genotypes into four pieces, 
which are then joined, shuffled, and used (four 
at a time) to generate the genotypes of the 
progeny.  

 
The one-point crossing-over strategy 1 has the 
property that the lengths of the parent genomes 
are invariant under recombination in the progeny. 
Since mutation also keeps the length of the 
genome, only fusion and elision change it. In fact, 
we did notice that fusion almost never leads to a 
fitter genome, while elision sometimes does, 
which means that the version of our genetic 
algorithm described in the previous section, which 
starts with a genome length copied from one of 
the target pieces of music, leads to genome 
lengths usually reduced by a little (not much) 
from their initial value. Strategies 2, 3 and 4, 
however, all lead to progeny genomes with 

lengths usually quite different from those of their 
parents (even when both parent genomes had the 
same length), which provides the population with 
a much larger genome length variety than strategy 
1. 
 
After performing several experiments we noticed 
that, at the beginning of the evolution, the second 
recombination strategy converges more quickly 
towards the target, but after a certain number of 
generations (usually between 150 and 200), the 
first and fourth strategies becomes better, while 
beyond about 500 generations after the beginning 
of the process the first strategy is clearly the best. 
Above 1000 generations, the first two strategies 
tend to converge, i.e. to obtain similar distances to 
the goal after the same number of generations. 
 
This brought us to our fifth and sixth strategies, 
which are simple combinations of the four 
described above: 
 
• In the first 150 to 200 generations, the 

algorithm uses the second strategy (the two 
point recombination procedure with four 
different crossing-over points between both 
parents). During all the remaining generations, 
the first strategy is used instead (i.e., the one 
point recombination procedure with a single 
crossing-over point for both parents).  

 
• In the first 200 generations, the program uses 

the second strategy; between generations 200 
and 500 it switches to the fourth strategy, and 
above 500 generations it uses the first strategy. 

 
The results of the combined strategies are much 
better than those of any of the four strategies 
applied separately, as shown in table 1. It can be 
observed that the first mixed strategy reaches, in 
just 600 generations, target distances similar to 
those attained by the first two strategies in over 
2500 generations. The improvement of the mixed 
strategies is therefore quite impressive. On the 
other way, the two mixed strategies attain 
comparable results. 
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Nr. of generations Strategy 1 Strategy 2 Strategy 3 Strategy 4 First mixed strategy 
1 0.930 0.930 0.930 0.930 0.930 
100 0.782 0.766 0.807 0.791 0.766 
200 0.734 0.710 0.756 0.744 0.697 
300 0.714 0.692 0.740 0.712 0.676 
400 0.702 0.692 0.722 0.704 0.659 
500 0.690 0.689 0.722 0.704 0.648 
600 0.681 0.683 0.716 0.704 0.643 
1000 0.663 0.682    
1500 0.658 0.666    
2000 0.656 0.658    
2500 0.644 0.652    
Table 1. A comparison of the performance of five different recombination strategies. 
 

 
 
Figure 2. Comparison between three different recombination strategies. 
 
Figure 2 shows a graphical representation of the 
results. Figure 3 shows the results of a different 
experiment with the same three strategies. 
 
In our analysis of the reasons for this behaviour, 
we have come to the conclusion that, with the first 
strategy, the population reaches a smaller genetic 

variability, where favourable mutations have a 
greater probability of appearing. On the other 
hand, the second strategy generates a much 
greater genetic variability, both with respect to 
genome lengths and contents, where favourable 
mutations are much harder to come by. This 
means that, on the long range, the first strategy 
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should work better than the second, which on the 
other hand gets faster results during the first part 
of the process, by evolving simultaneously in 
many directions and testing widely different 

genomes at the same time. Thus, the mixed 
strategy makes the best use of both recombination 
procedures, which is the reason for its outstanding 
performance success. 

 
Figure 3. Performance comparison of another experiment with the same recombination strategies. 
 
4. Heavy-tail distributions and 

automatic music generation  

 
In a previous work on the automatic generation of 
fractal curves with a given fractal dimension [12], 
we proposed a procedure to make the genetic 
algorithm which we were using, in a grammar 
evolution context, increase its performance by 
about one order of magnitude. This procedure 
made use of the fact that the time needed to reach 
the goal in that case is not a normal distribution, 
but a heavy-tail one. Thus, a strategy based on 
stopping the algorithm and reinitializing it, when 
it has not reached an acceptable goal after a 
certain number of generations, gives rise to very 
good performance improvements. 
 

With this procedure in view, we have analyzed the 
situation for the case of the automatic generation 
of music, but have come to the conclusion that, 
although it is possible that the distributions may 
still be heavy-tail, the performance improvement 
reached by applying the re-initialization procedure 
will be minimal, if any, because the minimum 
number of generations to reach an acceptable goal 
seems to be very large. This means that re-starting 
the algorithm does not provide us with a better 
chance of reaching an acceptable goal in a short 
time. 
 

5. Conclusions and future work 

 
We have found that the normalized compression 
distance is a promising tool to provide genetic 
algorithms for automatic music generation with a 
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measure of the distance to the desired target, 
which may be used as an appropriate fitness 
function. Some of the pieces of music generated 
by this program have a significant similarity to the 
style of well-known authors, in spite of the fact 
that our fitness function ignores the duration of 
the notes and takes into account only the relative 
pitch envelope. Our results have been much better 
than those we obtained previously with a different 
procedure and fitness function [13]. 
 
In the future we intend to combine our results 
with those of other authors [14-15], so as to use as 
the target for the genetic algorithm, not just one or 
two pieces of music by a given author, but a 
cluster of pieces by the same author, in this way 
trying to capture the style in a more general way. 
We also intend to modify the algorithm to use the 
information about note duration. 
 
We shall also try to work with a more standard 
and richer system of music representation, such as 
MIDI. 
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