
 1

Change Management Process on Database Level within RUP Framework

ZELJKA CAR*, PETRA SVOBODA**, CORNELIA KRUSLIN**
*Department of Telecommunications

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb

CROATIA
 www.tel.fer.hr/zcar

**Research and Development Department

KATE-KOM d.o.o.
Drvinje 109, 10110 Zagreb

CROATIA
 www.kate-kom.com

Abstract: - The paper presents a tailored RUP subprocess model with respect to database design and implementation.
Paper deals with documentation development for database team working concurrently on the database implementation.
Paper focuses on RUP construction phase of application life cycle, with the emphasis on Implementation and Change
Management discipline on the database level. Change management process model is proposed for database development,
which is compliant to tailored RUP framework. Integration points are RUP defined artifacts, roles, and activities. Paper
presents new artifacts added to tailored RUP model, as well as all other issues and their solutions for efficient
organization of database development team.

Key-Words: RUP, tailoring RUP, change management process, database design, implementation

1 Introduction
One of the basic for a software project to be successful
is that an appropriate underlying software process is
defined in such a way to respond to the project’s needs.
Rational Unified Process (RUP) is a software
development process applicable to a variety of projects
and able to accommodate varying project needs. RUP is
an iterative process, divided into four main stages [1]:
Inception, Elaboration, Construction, and Transition.
Throughout the course of the project, each of these
stages requires different disciplines to be applied, at
varying amounts of workload. Generally, RUP is
organized into nine disciplines: Business Modeling,
Requirements, Analysis and Design, Implementation,
Test, Deployment, Configuration and Change
Management, and Project Management and
Environment. The concepts of roles and activities
answer the questions of “who is doing which task”,
“what” is the task, and “how” to accomplish the task.
Artifacts are results of performing the activities. For
each artifact within the RUP there is a template
available, sometimes accompanied with the example
artifact [1]. However, the list of roles, artifacts, and
activities, by itself, does not constitute a process. These
process elements and their interactions have to be

organized in a proper way. This is done with workflows.
Following this methodology ensures production of high
quality software [1].
 RUP is offered as a framework so it presents
many extension points and tailoring opportunities. When
adapting RUP [2] to fit a specific project, it is important
to keep the integrity of RUP as a framework. A tailored
RUP model still defines a project in terms of phases and
set of disciplines. However, some disciplines, artifacts
and roles may be omitted or added. Existing literature
and work does not provide with many guidelines on how
to tailor RUP in this way, though a clear need for such
guidelines exists [2].
 This paper presents a tailored RUP subprocess
model with respect to database design and development.
RUP was originally tailored for the case study of
information intensive services development, in the scope
of a research project between the KATE-KOM company
and the University of Zagreb, Faculty of Electrical
Engineering and Computing. The applications deal with
notification services via SMS messages, enabling a fast,
simple, and cheap system capable of exchanging
information among different customers and application
providers. The complete approach used in tailoring RUP
for the development of the start-up application is

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

 2

described in [3]. The development of the subsequent
applications within information-intensive services set
was used for fine-tuning the original tailored RUP
model.
 Although a complete RUP tailored model covers
the entire software lifecycle, Construction phase and
database development activities have been chosen for
this paper as the most illustrative. The development
environment is presented and a case study project is
defined in terms of size, complexity, and length to allow
a better understanding of the utilized approach for
defining a database development process. We specify all
the problems and issues regarding the database
development during the project, and a solution is
proposed in the form of a database development process
model. The proposed process model is fully compliant
and joined to the tailored RUP process model through
the requested RUP database oriented artifacts, defined at
the project level.
 The paper is organized as follows: First section
shortly indicates tailoring guidelines for the project case
study. Favorable tailoring decisions are formalized and
stored as a part of the process model, and thus can be
applied in future projects. In the second section database
design and implementation process model is described.
Finally database development process model for RUP
construction phase is introduced as well as issues and
solution for creating documentation for change
management at database level.

2 Description of the tailored RUP model
First we will mention the basic principles of the tailoring
approach. It is fully described in [3]. A software project
case study is considered as a small project with a short
product cycle (a small team with less than fifteen
members, project duration of less than one year). The
number of documents in such projects tends to be
smaller and less detailed. Other characteristics of a small
project is frequent adding of new people to the project
team, and focusing project efforts on knowledge
management and efficient knowledge transfer without
significant time penalties.
 The baseline for RUP tailoring was a selection
of only those key development activities indispensable
for delivering a high quality software product [3].
Tailored RUP features are as follows [3]:
• Identifying and prioritizing project risks. Process

artifacts aiming in risk mitigation are more detailed,
and their structure as agreed within the project. Each
conclusion, agreement, or solution to a problem
occurring during the development process must be
formalized within the most appropriate artifact for a
particular development discipline.

• Concurrency in development activities is highly
encouraged to attain a more agile development.

• An effective software configuration management
process is established within the whole application
life-cycle.

 Configuration management (CM) is concerned
with managing evolving software requirements within
different lifecycle phases. Since nowadays, a software
development team faces ever-changing requirements as
the result of hectic market needs, effective project level
CM should control the costs, deadlines, resources, and
efforts involved in making changes to the application.
The project CM board consists of those development
team members who carry out key development roles and
are experienced enough to reasonably analyze the
impact of a particular change on the whole project.
Within the tailored RUP model in the project case study,
the proposed CM is defined both on project and database
level, for controlling the implementation of the changes .
 In the case study, a database was created,
implemented, and tested on MS SQL Server 2000. The
database contains a great amount of data about users,
functionalities and charging details regarding
information intensive service. Other database
technologies and CASE tools used in the project case
study are shown in Table 1. It is broken down by the
tool's product name, and the reason why the tool was
chosen for a particular aspect of the case study.

Table 1: Tools used in our case study development
Tools Purpose Description

Rational
Requisite Pro

Input of requests,
creation of vision,
creation of
dictionary,
use case description,
etc.

Request are
systematically
documented and all
developers with granted
permission supplement
and change requests.

Rational Rose Database Modeling

UML diagram creation,
system functionality
descriptions, database
functionality
description, database
objects description, etc.

Rational Soda
For Word

Documents
generation

MS SQL Server
– Enterprise
Manager

Implementation

Implementation of
database objects: tables,
stored procedures, user
defined functions, jobs,
etc.

MS SQL Server
– Query
Analyzer

Implementation and
testing

Database general
scripts, database test
scripts, etc.

MS SQL Server
– Profiler

Testing
Observing of database
behavior through the
work.

Text processing
tools (ex. MS
Word)

Document generation

Generation of
documents made for
corporation between
developers.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

 3

3 Database development process model
for RUP construction phase
After the initial Requirements discipline activities finish,
these basic artifacts are created: Requirements
Management Plan, Software Requirements
Specification, Supplementary Specifications and Use-
Case Model.
 These artifacts are foundation for:

• Determining general data and their attributes to
be contained in a database;

• Defining relations between different kinds of
general data;

• Representing general data and associated
attributes in an object-oriented manner by using
a design model containing use-case realizations,
design package, and design class diagrams.

 Quality database design in this phase is crucial
for proper input of changes to the database in later
project phases. In our case study, requirements were
changing rapidly and new ones were added very
frequently. If database design was inadequately
developed, errors would come up soon with new the
addition of new requirements. Database design errors are
the hardest to fix and the most expensive due to the
possibility of damage to the entire database later on in
the project. A valid database design should be open for
introducing future change requests. Following guidelines
in [5], we have developed design model in the case
study containing use-case realizations, design package,
and design class diagrams.
 Figure 1 shows design class diagram as a part of
design model in the project case study. Application
contains one database with data users, services, charging
information etc. and these data are object-oriented and
represented in the class diagram. According to these
classes new tables are created in database.

Figure 1: Example of design class diagram from design model in the

project case study

On the basis of the design model and requirements
oriented artifacts mentioned before, data model creation
is started. In data model, objects and their attributes are
created relationally, according to the conversion
between database design and data model proposed by
RUP. By this conversion classes in the design model
become tables in the data model, attributes in the design
model become database columns in data model etc.
Database data model is created and has clearly specified
database structure. Well defined and validated data
model ensures avoiding conflict situations that may
come up during database development and changing.

Figure 2: Example of data model in the project case study

Figure 2 shows part of data model created in the project
case study. In the shown model data are represented as
tables, attributes and constraints, and show the true
database condition. Data model may contain stored
procedures, triggers, user-defined data, functions etc.
 Within given tailored RUP model for the project
case study, database development team has associated
two roles. First role is database developer. This role is
assigned to one or more people. Second role is database
development leader. This role is assigned to only one
person. In the case study project database development
team (DBD team in the following text) consists of one
database development leader (DBD leader) and three
database developers (DB developers). Database
development team activities and responsibilities are
organized as follows:
• DBD leader participate as a DBD team

representative in project CM board and is engaged
in decision making process regarding requested
changes. All decisions from CM board are
documented within RUP artifact Change Requests
Decisions document, created by using the tool
Rational RequisitePro (Table 1).

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

 4

• The way how change is implemented in the database
is discussed in the DBD meetings with all DBD
team members included regularly.

• DB is divided into several logical units (LU) covering
different application business logic features. Each
developer is responsible for design and
implementation of particular DB LU.

• All DB developers should have the understanding of
the overall database functioning, purpose and
assignment, but they are not ought to be familiar
with the implementation details for those DB LU
they are not responsible for.

• Database design model and data model are the results
of the collaboration of all DBD team members. DBD
leader is responsible for validating the models and
managing implementation and testing activities.

• Each DB developer has a local copy of a database and
on the server there is a master database.

• Each DB developer is responsible for implementing
assigned DB LU, and for testing it on the local
database copy. DB developers create stored
procedures, jobs etc. in MS Query Analyzer and MS
Enterprise Manager (Table 1).

• Each DB developer is responsible for documenting
implementation and testing of assigned DB LU.

• In the defined time period all DB local
implementations are imported on the central DB for
which DBD leader is responsible for. The role of
project tester is responsible for testing integration of
DB and other application modules.

• One DBD team member is appointed for writing basic
database artifacts defined by RUP, design class, use
case models and to develop internal database
documentation: DBD Change Input, DBD Change
Control Document, Implementation and testing
records, DBD Testing records, DBD Proposals and
recommendations.

3.1 Change management process on database
level
There are some situations when changes must be entered
into a database, sometimes unfortunately even right
before software product delivery. The reason for this is
efficient response to market needs. But even minor
database change entry can cause chain reaction and
finally crash the database. Database change just before
software product delivery is called high-risk situation,
and has to be under full control. Different database
implementations can have a same interface to other non-
database modules. Introducing inadequate change in a
database can have negative impact on the functioning on
the whole application.

 Assumptions inherited from the project CM
process are:
• All introduced changes must be documented. This

should prevent conflict between different application
modules. Process should ensure that all DB
developers are aware of all database changes.

• Changes are classified into major and minor.
Classification is done by DBD leader who analyze
change request approved by project CM board.
Minor changes on database level in our case study
are changes affecting less than 5 objects. This type
of changes does not implicate significant
reconstruction of stored procedures, jobs, tables etc.
All others are considered to be major changes.
Change request is documented in artifact DBD
Change Input. Knowledge about major changes
should be shared among all team members and
should be documented in DBD Change Input, DBD
Change Control Document.

• If more than one database developer make changes in
database at the same time, database testing and error
handling is disabled. Database has to be unchanged
in defined time period. Only changes that will
appear in defined time period are documented.

 If more than one database developer is involved
in same project database creation, establishing a change
input period is needed. Change input period is a clearly
defined period for entering changes into database and
documenting it. In our case study a change input period
had a value of one week. Each database developer has a
local version of the main database and enters changes
through defined change input period into it. At the end
of the change input period database developers join their
changes to the main database version. Exactly at
specified day a DB developers enter tested changes they
implemented on their local database copy into central
database on the server. New DB objects are imported to
existing central database using tools like MS Enterprise
Manager for database objects import (Table 1) or in case
of minor changes DB developers enter changes into
central database manually. DBD leader supervises
integration of all local changes to the main database. If
integration problems happened, DBD leader is
responsible for coordinating DB developers to solve a
specific problem.
 DB developers tasks in CM process at database
level are:
• Taking care about assigned minor change

independently and implementing it, test and
document by itself. This should be done during
defined change input period.

• Participating in the modification of database design
model, data model and other artifacts impacted by
major change.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

 5

 Reviewing each proposal of change implementation
proposed by other DB developers in DBD Change
Control Document.

• DB developers have access to shared document
repository containing different database objects
constructions. They use predefined templates for
documenting the change. These documentation
templates are fulfilled with advises, instructions and
examples arising from previous projects, and they
present effective way of reminding about different
important issues that could be eventually omitted.

 DBD leader tasks in database CM process are:
• Assigning changes to the DB developers.
• Consulting DB developers through process of new

database object creation in design model, data
model, implementation of complex solutions, etc.

• Reviewing DB developers’ major change
propositions.

• Organizing and leading database meetings. All
members of DB team should attend database
meetings regularly.

 Figure 3 shows proposed CM process at
database level Process input is change request arrival
(1). The change has to be accepted by project CM board.
Database CM process is described as follows:
(2) DBD leader receives documented change request in
Change Requests Decisions document, containing
database change specified as a new requirement.
(3) DBD leader classifies change as a major or minor.
(4) DBD leader assign change to the particular DB
developer. In case of minor change, change is assigned
to only one developer. In case of major change, change
is assigned to two or more developers.
(5) Before implementing assigned change, DB developer
reads appropriate documentation with examples and
existing solutions stored in DB team document
repository in order to find the best solution for the
change they have to implement.
(6) DB developer proposes his solutions for assigned
change request and writes down his proposal in the DBD
Change Control Document (Table 2).
(7) DBD leader and DB developers write down
comments to proposed solutions in the same document.
(8) In case when proposed solution is inappropriate
database development team returns to state (6).
Otherwise it will be accepted and implemented in further
steps continuing into state (9).
(9, 10) DB developers implement and test accepted
change solutions.
(11) DB developers document testing. Documentation
consists of test inputs, expected outputs and test results
for every part of the code he has done. Also there is
indicated the test script is created.

(12) If database change implementation is not
successfully accomplished, DBD team returns to
beginning of database change implementation (state 9).
If database change implementation is finished
implemented database change is integrated with the
main database (13).

Figure 3: CM process at database level

3.2 Creating documentation for change
management at database level
Complete documentation for change management at
database level is indispensable for knowledge sharing
and knowledge preserving between DBD team
members. This kind of documentation enables
communication between database developers, their

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

 6

leader and provides better insight in database
development activities. Documents for CM at database
level are origin RUP artifacts and added artifacts for
covering DBD team activities and database knowledge
management and transfer to new DBD team members.
 Table 2 shows documents for database design
defined by RUP.

Table 2: Database artifact

Artifacts
Database
action / RUP
phase

Description Defined
by RUP

Design
Model

Design / All
phases

Object model
describing the
realization of use cases,
and serves as an
abstraction of the
implementation model
and its source code [4].

Require
d

Data Model Design / All
phases

Describes the logical
and physical
representations of
persistent data used by
the application [4].

Optiona
l

Project
Specific
Guidelines

Design / All
phases

Guidance on how to
perform a certain
activity or a set of
activities in the context
of the project [4].

Optiona
l

DBD Change
Input

Change input
/ Construction
and
Transition

Detailed description of
every database object,
including information
for database team.

Not
defined

DBD Change
Control
Document

Change input
/ Construction
and
Transition

Description of
proposed solution,
other DB developers
comments.

Not
defined

Implemen-
tation and
testing
records.

Change input
/ Construction
and
Transition

Description of database
implementation
process, testing process
and record of possible
problems in those
processes.

Not
defined

DBD Testing
records

Testing /
Construction

Testing process
description including
test scripts description.

Not
defined

DBD
Proposals
and
recommenda
tions

Testing /
Construction

Supplementing the
existing and creation of
new proposals and
recommendations.

Not
defined

 Table 2 also contains documents used in our
case study that are not defined by RUP:
• DBD Change Input. Detailed description of every

new database object, including information who did
it, what is it for, who instructed developer, when
object was created, and was it successfully accepted
by other DB developers code in the main database.
RUP defines similar documentation through reverse
engineering where database object has detailed
description, but it does not contain enough
information for use in forward engineering. A

document preserves information about DBD team
member’s responsibilities and efforts.

• DBD Change Control Document. Preserves
information about change implementation proposals
and objections, and is helpful for maintaining open
database structure ;

• Implementation and testing records and DBD
Testing records. Preserve information about entered
changes that are important for further database
testing, integration and maintenance of the overall
application.

DBD leader is responsible for providing all necessary
documentation, templates and possible best practice
from previous projects and for monitoring the process of
database documentation management.

4 Conclusion
The paper presents a tailored RUP subprocess model
with respect to database design, implementation and
change management. RUP was originally tailored for the
case study of information intensive services
development, but experience of start-up application
showed need for better formal modeling of database
development process, especially regarding change
management. Therefore the process of change
management on the database level was formalized and
supplemented with additional artifacts in order to
document and transfer database knowledge and efforts.
From our experience, this approach was helpful and
beneficial for the overall project, even after the
application delivery for both perfective and corrective
maintenance process, especially for better knowledge
transfer through the project.

References:
[1] P. Kruchten, The Rational Unified Process: An
Introduction, 2nd Edition, Addison Wesley Longman, 2000.
[2] G. K. Hanssen, H. Westerheim, F. O. Bjørnson, Tailoring
RUP to a defined project type: A case study. Proc. 6th
International Conference on Product Focused Software
Process Improvement (PROFES'2005), Oulu, Finland, 2005,
pp. 314-327.
[3] Ž. Car, O. Labor, A. Carić, D. Huljenić, Tailoring RUP: E-
School Project Case Study. Proceedings of the Conference
Telecommunications & Information MIPRO 2004, Rijeka,
Croatia, 2004, pp. 27-32.
[4] M. Hirsch, Making RUP Agile. Conference on Object
Oriented Programming Systems Languages and Applications
archive - Practitioners Reports. Seattle, Washington, 2002.
[5] E.J. Naiburg, R.A. Maksimchuk, UML For Database
Design, Addison-Wesley, 2001.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp8-13)

