
An Application of Genetic Algorithm for Auto-body Panel Die-design
Case Library Based on Grid

Demin Wang2, Hong Zhu1, and Xin Liu2

1College of Computer Science and Technology, Jilin University,
Changchun 130012, P.R. China

2The Network Center, Jilin University,
Changchun 130021, P.R. China

Abstract: - The use of case library techniques to direct new designs for auto industry is becoming increasing
widespread. In this paper, we use a genetic algorithm to realize a quick match with the best case, which can
satisfy the intelligence request of the case library. Experiment results show that the proposed algorithm can
greatly increase the efficiency of searching for the best case. Additionally, this paper presents a novel framework
of auto-body panel die-design case library based on grid. By using grid technology, it has solved the principal
problems existing in current case libraries. Consequently, we anticipate that this work will have a broad
application in the making of auto-body panel dies.

Key-Words: - Genetic Algorithm, Grid, Case Library, Auto-body panel, die

1 Introduction
With the rapid development of auto industry, auto
styles are updating gradually, and the period of
updating auto styles between two generations is
becoming shorter and shorter. As such, the
conventional designing and producing methods of
dies cannot meet the need of rapid development any
more. Although experience plays an important role in
auto die design, training a better designer will cost a
lot of time. Nowadays, those die-design people with
much hands-on experience have been laid off or left
those enterprises, which cause great loss of such
knowledge. Hence, if we are able to retain the design
experience, later designers can design a new scheme
by combining and revising those old designing
schemes. This will have a broad application in the
making of auto-body panel dies. Based on the
complex and dynamic behaviors of case library, this
paper presents an organizing scheme by
incorporating mobile-body panel die-design case
library. It better shows the relation between standard
pieceworks and dies, and realizes the quick retrieval
of pieceworks for designers to use.

Case library intelligence is a certain trend in the
development of the case library. The pith is
concerned with transforming information into
knowledge and then directing the originality by using
this knowledge. At present, the best case retrieving
methods in widespread use is to consider the

characteristic values input by the user as the present
case, and then searching for the most similar case
with the present case in case libraries in order to
direct the new designs for users. However, case
libraries are gradually enlarged with the
accumulation of applications, so how to efficiently
retrieve the objective case has become the key
problem. In the past, a sequential matching method is
widely used in the database searching. But this will
be very boring and ineffective because the auto-body
panel die-design case library has a multiple
hierarchical structure and a huge amount of complex
data. In this paper, we use a genetic algorithm, and
write the relevant characteristic values into a file,
which can be read into the memory once. Experiment
results show that the proposed method can greatly
increase the efficiency of retrieving the best case.

Additionally, the sharing of case libraries has not
been implemented to any large extent. Three main
problems are shown as follows. Firstly, most of
suppliers and producers live in different countries
and regions, so the information platform has not been
formed yet and thus the applications of the case
library are restricted to small enterprises; Secondly,
communication among enterprises is very limited;
Finally, heterogeneous case libraries dispersed in
different geographical regions are difficult to realize
the true share. Grid is viewed as a new important
infrastructure, however, it has more significant
features than other network technologies, and its

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp43-47)

main characters are that it can implement sufficient
share for these geographically distributed resources.
It also can remove the difference of platforms and
realizations among all nodes. This paper proposes a
framework for auto-body panel die-design case
library based on grid. Constructing grid-based case
libraries has shown the prospect of applying grid
technology to the case library, and thus has a bigger
theoretical meaning and practical application value.

2 Genetic Algorithm
The concept of genetic algorithm was first presented
in 1975 by John Holland [1]. It is a stochastic search
method which is inspired by evolution in biological
systems where the search is conducted directly in the
solution space. Each solution is encoded in a certain
way and is called an individual. The search is parallel
in the sense that a population of individual is
maintained and the quality of the individuals is
calculated by a fitness function. The population is
improved by crossover, recombination of genetic
material from different individuals. This is based on a
hypothesis that a good solution can be built up from
shorter partial solutions [1-3]. Genetic diversity is
maintained by a mutation operation, making random
changes in the individuals.

When the genetic algorithm is implemented it is
usually done in a manner that involves the following
cycle: Evaluate the fitness of all of the individuals in
the population. Create a new population by
performing operations such as crossover,
fitness-proportionate reproduction and mutation on
the individuals whose fitness has just been measured.
Discard the old population and iterate the new
population. Generally, genetic algorithm is described
as follows:

1. Generate the Initial Population;
2. Evaluate the Population;
While No termination criterion is satisfied do
 3. Select chromosomes from the current

population;
 4. Apply the Crossover and Mutation operators

to the chromosomes selected at step 1 to
generate new ones;

 5. Evaluate the chromosomes generated at step
4;

 6. Apply the Acceptation criterion to the set of
chromosomes selected at step 3, together
with the chromosomes generated at step 4;

End while
7. Return the best chromosomes evaluated so far;

3 Auto-body Panel Die-design Case
Library Based on Grid

3.1 Organization of the Case Library
There are many ways to realize auto-body panel
die-design case library [4]. We choose a relational
database. The realization of the case library is
indexed by parts and it is classified into directory
structure and case data, which is shown as follows:
1. Case logical directory structure is divided into

five layers, Automobile classification, vehicle
type, a series of specific types, components
assembly type, and the name of some certain
workpieces, which are mapped to some
interrelated tables in relational database.

2. Case data is divided into two layers: The first
contains concrete case data of workpieces and
the second contains concrete case data of some
forming process dies belonging to this
workpiece. The case data of case library consists
of these two layers, which are mapped to some
interrelated tables in relational database.

In order to search for the best case to direct the
new design for users more conveniently, we draw
some main characteristic values of each part or die
when we add new cases each time. Then write these
features into a certain file and store this file into the
database as a single field.

3.2 Framework
According to the distance to the shared resource, a
hierarchical model is presented. This model, as
figure1 shows, provides a hierarchical abstraction of
the case library based on grid. We begin the
discussion by understanding each of the layers in the
model.

At the lowest level, the information layer, we have
the case libraries that Grid users want to share and
access. Moreover, the case libraries are distributed on
different platforms, and they store the data by using
different database systems.

The next horizontal layer, the interactive layer,
consists of the information interactive layer and the
service interactive layer built atop the information
layer. The information interactive layer contains a
bunch of GCSs (Grid Case Library Service). They are
provided to the upper level as grid services, and
developed by the administrator or the users of each
node. The service interactive layer can be viewed as a
collective center of services. It contains CNMS (Case
library Node Management Service) and GCSR (Grid
Case library Service Registry). GCS receives the
administration and status monitoring of CNMS of the
local case library nodes, and when a GCS has
changed in this case library, it should send a message

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp43-47)

to GCSR in order to register a new service or cancel
the original one. GCSR is responsible for processing
the registration messages which are sent from CNMS,
and storing these messages into the registration
library. GCSR will also send detecting messages at a
certain interval to CNMS, and get the lastest status
information of all nodes in order to provide more
efficient service discovery for CLAS (Case Library
Aggregation Service).

Above the interactive layer is the collective layer.
It contains CLAS, which directly receives the request
from the user who has an approved identity
validation, and then retrieves the relevant factory
service from GCSR. Finally, CLAS gets the result
and processes it to the needed format.

At the top of this model are user applications. They
can get results from the collective layer and control
the format of displaying cases.

Fig.1. The Architecture of the Case Library Based on Grid

4 Genetic Algorithm for Grid-based

Auto-body Panel Die-design Case
Library

4.1 Encoding
Every record is read as an element into a vector. If
the amount of the records is N, number them from 1
to N. Here we set m is the length of binary string N,
then every individual in the population adopts the
unsigned binary code {0,1} with the same length m,
referring to the location of every record. For example,
if N=5000, then m=13 and the 1000th record is
encoded with 0001111101000.

4.2 Fitness Function
According to the strategy of near neighbor, fitness
function is defined as follows:

1
(,) (,)

n

i
Similarity T S f Ti Si Wi

=

= ×∑ (1)

Where T refers to the target case and S is the source
case; n is the number of similarity units contained in
each case. (,)f Ti Si is defined as the similar value
of the i-th similarity unit; Here similarity unit is the
similar element of two parts, which make a similar
comparison [5]. We take some oil pan as an example,
shown in the figure 2, it contains a base similarity
unit a, oil seal similarity units b and c, and step
similarity units d and e. Wi represents the weight of
each similarity unit which is input by the

client, [0,1]Wi∈ , . .
0

1=
n

i

Wi
=
∑ [1,]i n∈

In addition, (,)f Ti Si is defined in Equation (2).
(,)nf Ti Si is the fitness of the number of

characteristic values and (,)sf Ti Si refers to the
fitness of the characteristic values of a similarity unit;

sn and are the amount of characteristic values of a
similarity unit in the source case and the current case
respectively, whose values are not equal to –1; -1
indicates no values; m is the number of the
characteristic values of a similarity unit; and

are the j

tn

jsr
jtr th characteristic value of a similarity unit

in the source case and the current case dividedly.

/ ,

/ ,

1

1

(,) (,) (,)

(,)

1 ,
(,)

1 ,

n s

t s t s
n

s t t s

m
js

js jt
jtj

s
m

jt
js jt

jsj

f Ti Si f Ti Si f Ti Si
n n n n

f Ti Si
n n n n

r r r
m r

f Ti Si
r r r

m r

≤

>

≤

=

>

=

= ×

⎧
= ⎨
⎩
⎧
⎪
⎪= ⎨
⎪
⎪⎩

∑

∑

 (2)

Fig.2. The similarity units of an oil pan.

4.3 Selection
In order to avoid premature convergence, we
perform a sigma proportional transformation on each
individual’s fitness value [6]. For example, for the
fitness value f(i) of the i-th individual, at first we

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp43-47)

apply the following formula to f(i) to transform it
into ExpVal(i):

1 (() ()) / 2 (), () 0
()

1, () 0
f i f t t t

ExpVal i
t

σ σ
σ
+ − >⎧

= ⎨ =⎩
(2)

Where f(t) is the average fitness value of the t-th
generation population, and ()tσ is the standard
deviation of the t-th generation population. After
such transformation, the algorithm then uses elitist
fitness proportionate selection mechanism for
ExpVal(i) to select chromosomes for reproduction.
The best individual in the population is always
passed on unchanged to the next generation, without
undergoing crossover or mutation.

4.4 Crossover
The crossover probability Pc is set to 0.75 against this
problem and the crossover operator is defined as
follows: The two-point crossover generates two new
individuals by randomly selecting two cross sites and
exchanging the corresponding coordinates between
them. If the number of any new individual is greater
than the amount of the records, discard these two
individuals and do the crossover operation again to
get a new couple.

4.5 Mutation
The mutation operators are applied sequential and
independently from crossover. It enables the
algorithm to have the ability to local search and keep
the diversity of the population. The gene is mutated
stochastically with a given mutation rate Pm. If the
gene is ‘1’, we set it to ‘0’, otherwise, if the gene is
‘0’, we set it to ‘1’. And if the number of any new
individual is greater than the amount of the records,
discard this individual and do the mutation operation
again to get a new one.

5 Experimental Results and Analysis
The algorithm described above was implemented as
a grid service. It is developed to each node of the
case library using the bottom-up method [7]. In order
to verify the efficiency and validity of the genetic
algorithm, 5000 and 10000 records of simulated data
related with some oil pan are produced and two
experiments are performed respectively. The
experimental parameter values are shown in table 1.
Table 2 shows the comparison of different methods.
As can be seen, the GA method is about 23 times
faster than the traditional method ATDB (accesses
the database item by item) against a 5000 records
dataset and nearly 25 times regarding a dataset
containing 10000 records. These results show that
the GA method is considerably more effective than

traditional searching methods. It can be concluded
that in practical applications, the GA method can
increase the usefulness of CPU by increasing its
efficiency in searching.

Table 1. The parameter values of the experiment
Parameter values Parameters

5000 records 10000 records
Population size 20 30
Generation count 100 150
Crossover probability 0.50 0.75
Mutation probability 0.01 0.03

 Table 2. Comparison of different methods for
searching the best case in the grid-based case

library
 CPU Time (s)
 ATDB GA

 Methods

Number
of records

 Min. Ave. Min. Ave.
 5000 48.93 58.08 2.01 2.48
 10000 102.42 121.43 4.52 4.86

Note: ATDB is a traditional method that accesses the
database item by item; GA is genetic algorithm; Min. is
minimum CPU time in twenty operations; Ave. is
average CPU time in twenty operations.

Figure 3 provides a snapshot of the grid-based

case library client tool. The interface displays the
directory structures of the case library, and provides
the query function of searching the case library data
by keywords.

Fig.3. Grid-based case library client tool

6 Conclusion and Future Work
In this paper, we present a framework of grid-based
case library by incorporating mobile-body panel
die-design case library, which uses grid technology
to implement virtual integration of heterogeneous
case libraries dispersed in different geographical

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp43-47)

regions, and such case library has solved the principal
problems existing in current case libraries and
enhances collaboration and communication among
different enterprises. In addition, we use a genetic
algorithm to realize the quick match with the best
case, which can satisfy the intelligence request of the
case library. Experiment results show that the
proposed algorithm can greatly increase the
efficiency of searching for the best case, which will
have a deeper meaning for the application of the case
library under the grid environment.

The core of next work will combine with more
knowledge of optimization algorithms to make sure
that the retrieved case by our method has a higher
similarity accuracy compared with the objective case.

Acknowledgments
This work is supported by the National Natural
Science Foundation of China under Grant No.
60433020.

References:
[1] Holland, J. H., Adaptation in Natural and

Artificial Systems, MIT Press, USA (1992).
[2] Davis, L., Genetic Algorithm and Simulated

Annealing, Pitman Publishing, UK (1987).
[3] Goldberg, D.E., Genetic Algorithm in Search,

Optimization, and Machine Learning,
Addison-Wesley Publishing Company,
USA(1989).

[4] Wang Demin, Wu Zhiqiang and Hu Ping, Key
techniques to distributed die design case library,
Journal of Jilin University (Engineering and
Technology Edition), vol. 35, pp. 314-318, May
2005.

[5] Zhou Meili, Principles of Similarity Formation
between Similar Systems, Int. J. of General
System, vol. 27(1), pp. 495-504, 1999.

[6] Eloranta, T., Makinen, E., TimGA—a Genetic
Algorithm for Drawing Undirected Graphs.
Technical report, Department of Computer
Science, University of Tampere,
December(1996).

[7] Borja Sotomayor . (2003). The Globus Toolkit 3
Programmer's Tutorial. [Online]. Available:
http://gdp.globus.org/gt3-tutorial/.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp43-47)

http://gdp.globus.org/gt3-tutorial/

