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Abstract: Evolutionary optimization algorithms contain, due to their heuristic inspiration, many 
heuristic parameters, which need to be empirically tuned for the algorithm to work most properly. This 
paper deals with tuning those parameters in situations when the values of the objective function have 
to be obtained in a costly experimental way. It suggests to use a neural-network based approximation 
of the objective function for parameter tuning in such situations. In this way, the convergence speed of 
the algorithm and the density of the poplation of points can be investigated for many various 
combinations of heuristic parameters. To construct the approximating neural network, some initial 
amount of data is needed, usually obtained from running the algorithm for several generations with 
default values. The feasibility of the approach is demonstrated on a case study in materials science.  
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1. Introduction 
Evolutionary and especially genetic algorithms 
(GAs) have been used since the last decade for 
optimization tasks in many application domains 
[3,4,7], mainly for the following reasons: 
they do not need gradient nor higher order 
derivatives of the objective function; 
they follow a collection of optimization paths 
instead of a single one; 
they require a comparatively low number of 
function calls parallelized with respect to the 
followed paths; 
they tend to find global optima rather than local 
ones. 
Due to these reasons, genetic algorithms are 
particularly suitable for the optimization of 
functions for which the analytic form is not known 
and the costs of obtaining function values can not 
be neglected, typically when those values have to 
be obtained through experimental measurements. 
Their suitability further increases if there is a 
straightforward correspondence between the 
parallelism of the collection of optimization paths, 
and the way how the function values are 
experimentally obtained. Such situation occurs, for 

example, in materials science or in high-throughput 
chemical experiments.  
On the other hand, the basic principle of 
evolutionary algorithms, i.e., the imitation of 
survival in biological evolution, implies that they 
contain many heuristic parameters. To tune those 
parameters empirically would substantially increase 
the cost of solving the optimization task and 
completely invalidate the advantage of evolutionary 
and genetic algorithms being comparatively 
undemanding in terms of parallelized function 
calls.  
This paper shows that instead of tuning the 
heurisitic parameters by means of the 
experimentally obtained objective function, an 
approximation of that function with artificial neural 
networks can be used. This needs some initial 
amount of data, usually obtained from running the 
algorithm for several generations with some default 
parameter values, but then any number of  
parameters can be tuned for no additional costs. 
The principles of that approach are explained, and 
the approach is illustrated on a case study in 
materials science [8]. 
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2. Genetic Algorithms and Their 
Heuristic Parameters 

Genetic algorithms [3,4,7] are a stochastic 
optimization method. This means that when 
searching for maxima or minima of the objective 
function, the available information about its values 
is combined with random influences. The term 
"genetic algorithm" refers to the fact that their 
particular way of incorporating random influences 
into the optimization process has been inspired by 
the biological evolution of a genotype.  Basically, 
that optimization method consists of: 

• random exchange of coordinates of two 
particular points in the domain of the objective 
function, called crossover or recombination; 

• random modification of coordinates of a 
particular point in the input space, called mutation; 
sometimes, a differnece is made between 
qualitative mutation if the coordinate corresponds 
to a discrete-valued attribute, the individual values 
of which represent qualitatively different states of 
objects, and quantitative mutation otherwise, 
especially if the coordinate corresponds to an 
interval-valued attribute; 

• selection of the points for crossover and 
mutation according to a probability distribution, 
either uniform or skewed towards points at which 
the objective function takes high values (the latter 
being a probabilistic expression of the survival-of-
the-fittest principle). 

The operations selection, crossover and  mutation 
require only function values of the objective 
function, and they can be performed in parallel for 
a whole population of points. At the same time, the 
incorporated random variables enable the 
optimization paths to leave the attraction area of the 
nearest local optimum, and to continue searching 
for a global one. The probability that at least one 
optimization path will reach the global optimum 
increases with the diversity of the population of 
points. On the other hand, those random variables 
heavily depend on the underlying probability 
distributions of possible values. Due to the 
biological inspiration of the random variables, a 
particular distribution can not be justified 
mathematically, but its choice is a heuristic task. 
The most important heuristic choices entailed by a 
genetic algorithm are: 

• overall probability of any modification 
(crossover, qualitative or quantitative mutation) of 
an individual; 

• ratio between the conditional probabilities of 
crossover and qualitative or quantitative mutation, 
conditioned on  any modification; 

• distribution of the intensity of quantitaive 
mutation, e.g., distribution the coefficient with 
which the respective coordinate has to be 
multiplied / divided. 

In addition, also the population size is sometimes a 
matter of heuristic choice, though in other cases it 
is determined by hardware limitations of how the 
values of the objective function are obtained (e.g., 
the number of measurement sensors, the number of 
channels in a chemical reactor). 

 

 

3. Tuning Heuristic Parameters by 
Means of Artificial Neural 
Networks 

If the values of the objective function have to be 
obtained in a costly experimental way, then it is not 
affordable to employ that costly evaluation also for 
tuning the involved heuristic parameters. The aim 
of this paper is to suggest that, in such situations, a 
neural-network based approximation of the 
objective function be used for parameter tuning, 
instead of that function itself. The cost of 
computing such an approximation in a population 
of points even for a large number of combinations 
of values of heuristic parameters is negligible 
compared with the cost of experimentally 
evaluating the original objective function in those 
points for any single combination of their values. In 
addition, experimental evaluation of one generation 
of individuals typically needs hours to days of time, 
whereas if the neural-network based approximation 
is computed instead, the genetic algorithm 
advances to the next generation in a fragment of 
second. The algorithm then can be run for many 
generations in that case, allowing to investigate, 
through this neural-network simulation, its 
convergence speed for any particular combination 
of values of heuristic parameters. Moreover, also 
the evolution of the diversity of the population of 
points can be investigated in that way, which is 
important due to the role that the diversity plays in 
enabling optimization paths to reach the global 
optimum.  

Needless to say, training the neural network 
requires some initial amount of data from 
experimentally evaluating the objective function to 
be gathered first. To this end, data from several 
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early generations of the genetic algorithm are 
usually sufficient, especially if the population size 
is large. Actually, data from the early generations 
are more uniformly distributed, making it more 
likely that the  neural network will correctly 
approximate all optima, including the global 
optimum. Sometimes, also data from other 
experiments concerning the same problem are 
available. Once the parameters have been tuned, 
they can be used for all the remaining  generations 
of the algorithm, or the tuning can be repeated 
every several generations, using a new neural 
network. In the latter case, the data from 
experimentally evaluating the objective function 
that were gathered since the last tuning are addet to 
the training data of the network.  

An obvious drawback of the proposed apporach is 
that until the amount of data needed for network 
training gets available, the values of heuristic 
parameters remain untuned, and have to be set to 
some kind of default values. However, first 
experience with the approach confirms the 
expectation that this drawback is outweighed with 
the possibility to investigate, for any combination 
of values of heuristic parameters, the convergence 
speed of the algorithm and the evolution of the 
diversity of the population of points. 

The approach has been already used in several 
appliacations in chemistry and materials science. 
One of them will be described in some detail in the 
following section. 

 

 

4. A Case Study Using the Proposed 
Approach 

Most of industrially important chemical reactions 
are catalysed, and the choice of their  catalysts can 
significantly influence the yield and cost of the 
desired reaction product(s), as well as the 
production of nuisant by-products, which in turn 
entail separation and cleaning costs of the desired 
product(s). Therefore, much attention has been paid 
to the optimization of  catalysts for important 
reactions, including their optimization by means of 
genetic algorithms. In this case study, heuristic 
parameters of a genetic algorithm implemented 
specificaly for the purpose of catalyst optimization 
[9] have been tuned on data about 328 materials 
tested as catalysts for the oxidative 
dehydrogenation of propane to propene [2]. The 
materials consisted of a mesoporous alpha-
aluminium support covered externally and 

internally with metal oxide mixtures selected from 
elements B, Fe, Ga, La, Mg, Mn, Mo, and V. All 
the materials were tested at the same standard 
conditions: T = 273 K, pC3H8 = 30,3 kPa, pO2 = 10,1 
kPa and pN2 = 60,6 kPa. The data came from 
running the genetic algorithm for the 1.–5. 
generation with default parameters and population 
size 60, and were complemented with 28 catalysts 
from supplementary experiments. 

With those data, a series of multilayer perceptrons 
have been trained. To obtain perceptrons with 
possibly high generalization ability, two 
overtraining-reduction methods have been used – 
early stopping and Bayesian regularization. The 
atomic proportions of all included oxides of these 
elements are connected through the concentration 
constraint (requiring that they have to sum up to 
100 %), hence one of those proportions is always 
derivable from the remaining seven and cannot be 
used as an input to the network. In the reported 
experiments, the proportion of V has been chosen 
to this end. Each multilayer perceptron that 
approximates the dependency of the propene yield 
on the proportions of the oxides of considered 
metals must then have 7 input neurons and one 
output neuron. As far as hidden neurons are 
concerned, a restriction to perceptrons with one 
hidden layer was made. This restriction was based 
on the one hand on the fact that even multilayer 
perceptrons with one hidden layer have the 
universal approximation property [1,6], on the 
other hand on the experience from research 
reported in [5], in which other data of the same 
reaction were used for training one- and two-
hidden-layer perceptrons. In that research, 
architectures with only one hidden layer showed a 
clearly better generalization ability. To find the 
most appropriate number of neurons in the single 
hidden layer, perceptrons with 1–20 neurons were 
trained in combination with each of the considered 
overtraining reduction methods and their 
generalization error, estimated with mean squared 
error on test data was compared. For the 
experiments with the genetic algorithm, the 
combination of architecture and overtraining 
reduction method leading to the least generalization 
error was selected. This was the architecture with 
5 hidden neurons, combined with early stopping. In 
accordance with the proposed approach, the 
function computed by that network was used as an 
approximation of the unknown objective function, 
which was the yield of C3H6 in the considered 
reaction. To evaluate the success of the genetic 
algorithm in searching for the global maximum of 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp1-6)



the approximation, that maximum was first 
estimated with a deterministic optimization 
method. To this end, the Levenberg-Marquardt 
method was used, more precisely its modification 
for constrained optimization. Since that method 
searches only for local maxima, it was started from 
7 different starting points. The highest of those 
local maxima will be in the sequel considered as 
global maxima of the approximation. 

The approach was applied to 24 particular 
combinations of heuristic parameters, combined 
with 4 different population sizes.  

For each of those 96 final combinations, the 
algorithm was run repeatedly 10 times. This entails 
a certain variability of the obtained results, 
documented in Fig. 1 and Fig. 2. The significance 
of the information conveyed by those figures 
consists in the fact that it indicates which part of 
the difference between the presumable global 
maximum of the approximation and the maximum 
found by the genetic algorithm and which part of 
the population diversity were due to the 
randomness-caused variability. In particular, 
repeated runs of the GA accounted in average for 
an absolute error of 0.07 % of the maximal propene 
yield found by the algorithm (corresponding to a 
relative error 0.8 %), and to an absolute error of 
0.1 % of the population diversity of propene yield 
(corresponding to a relative error nearly 100 %). 

For each final combination, the following results 
have been recorded: 

• The convergence of the algorithm during the 
first 50 generations, which is measured as the 
evolution of the maximal value of the objective 
function among the population of points 

• The decreasing diversity among the population 
of points during the first 50  generations, where 
diversity is measured as the difference between the 
maximal and mean value of the objective function 
among the population of points. 

In those results, the following indicators of 
convergence have been employed: 

(i.) Average of the value of the global maximum 
of the objective function, and the maximal value of 
the objective function among the population of 
points proposed in the first generation, i.e., the 
value “½(global maximum + 1st generation)”. 

(ii.) Global maximum of the objective function 
minus 0.8 % relative error, which was the average 
relative error due to repeated runs of the algorithm 

with an identical combination of values of heuristic 
parameters. 

(iii.) The global maximum of the objective 
function within one decimal digit precision. 

 

 
Fig. 1. Example of randomness-caused variability 
in convergence of the GA: the algorithm was run 
repeatedly 10 times with an identical population 
size and an identical combination of values of 
heuristic parameters, starting from the an identical 
first generation 

 

As indicators of decreasing diversity among the 
population of points, the following have been 
employed: 

(i.) Half the diversity in the first generation. 

(ii.) Diversity 1 %. 

(iii.) Diversity 0.1 %. 

The most important knowledge pertaining to the 
choice of the population size and of the values of 
heuristic parameters, which has been obtained from 
running the genetic algorithm with the 96 
considered combinations, can be summarized as 
follows:   

1. The indicators of convergence that were 
fulfilled for a given combination of values of 
heuristic parameters were typically fulfilled already 
after early generations. Moreover, distributions  of 
the number  of generations needed to fulfil the three 
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considered indicators of convergence are clearly 
skewed towards low values. Those distributions are 
depicted in Fig. 3, which thus significantly 
documents that early generations are much more 
important in optimization by means of  genetic 
algorithms than later generations. 

 

 
Fig. 2. Example of randomness-caused variability 
in the diversity of the population of points: the 
algorithm was run repeatedly 10 times with an 
identical population size and an identical 
combination of values of heuristic parameters, 
starting from an identical first generation 

 

2. The convergence speed of the GA tends to 
increase with increasing population size (see Fig. 4 
for an example). 

3. For a given generation above approximately the 
10th generation, the maximal value of the objective 
fuction among the population of points tends to 
increase with increasing population size (cf. Fig. 4). 

4. The diversity among the proposed points 
decreases more quickly if crossover and mutation 
occur with equal probability than if one of them 
substantially prevails (Fig. 5). 

 
Fig. 3. Distribution of the number of generations 
needed for the value of the objective function 
among the population of points  to fulfil three 
increasingly strong indicators of convergence of the 
GA (the algorithm has been run till the 50th 
generation, irrespectively of which of those 
indicators had been fulfilled) 

 
Fig. 4. Example dependency of the maximal value 
of the objective function among the population of 
points on the generation, for 4 considered 
population sizes 
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Fig. 5. Example illustrating that the diversity of the 
population of points in one generation of the GA 
decreases more quickly if crossover and qualitative 
mutation occur with equal probability than if one of 
them substantially prevails 

 

5. Conclusion 
This paper dealt with the problem of tuning 
heuristic parameters of genetic algorithms in 
situations when the values of the objective function 
have to be obrtained in a costly experimental way. 
It suggested to use a neural-network based 
approximation of the objective function istead of 
the function itself in such situations. In this way, it 
is possible to investigate the convergence speed of 
the algorithm and the diversity of the population of 
points for many various combinations of heuristic 
parameters.  The feasibility of the approach has 
been demonstrated on a case study in materials 
science. The study has shown  that  by means of the 
aproximation,  knowldge useful for the choice of 
the population  size  and the values of heuristic 
parameters can be obtained. So far, only multilayer 
perceptrons have been used in the applications of 
the approach, extensions to other kinds of artificial 
neural networks are a subject of ongoing research. 
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