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Abstract: - This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to reduce 
flow separation. Laminar flow control has long been considered as a potentially viable technique for increasing aircraft performance. 
Previous studies have demonstrated that laminar flow control could reduce takeoff total weight, mission fuel, and structural 
temperatures. 
       This paper will show flow over fuselage using active and passive designs. Active design uses a porous boundary condition, 
whereas, passive design without a porous boundary condition. A primary goal of the passive design is to obtain detailed surface 
pressure–distribution data. These data were obtained for a Mach range of 0.4 – 0.9. This paper demonstrated that laminar flow and 
flow separation-reduction can be achieved on a blunt fuselage configuration for a Mach range of 0.4 - 0.9. Pressure-distribution and 
transition data were obtained for a Mach range of 0.4 - 0.9. The results show that large regions of laminar flow can be achieved when 
active laminar flow control is used. This paper shows that slower moving air on the upper surface can be increased in speed by 
bringing air from the high pressure area on the bottom of the fuselage through slots. One can conclude from this study, also that the 
porous boundary condition should be at least 2/3 of the incoming free stream velocity and in the axial direction. Pressure will decrease 
on the top so the adverse pressure gradient which would cause the boundary layer separation reduces. 
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Nomenclature 
Symbol        Meaning   

cv Specific heat at constant volume 

e Internal energy 

e  Deformation Tensor   

fij Viscous forces 

I  Identity tensor 

ho Stagnation enthalpy 

k Thermal conductivity 

m Mass 

p Static pressure 

Q Heat generation 

t Time 

T Static temperature 

T  Stress tensor       

U Mean velocity component 

V Mean velocity component 

W Mean velocity component 

W Molecular Weight 

εij Rate of strain tensor 

γ Ratio of specific heat  

δij Kronecker delta 

ρ Density of fluid 

λ Bulk viscosity 

τij Shear stress 

μ Coefficient of viscosity 

 
1 Introduction 
Flow separation is a phenomenon of special interest in 
boundary layer theory and its understanding was advanced 
considerably by [1] who showed that regular separation could 
occur by an interactive process. Since then, triple deck theory 
has contributed much to the understanding of boundary layer 
separation [2-3]. Excellent reviews may be found in [4-10].  
       In most situations it is inevitable that the boundary layer 
becomes separated from the surface of a body. This detachment 
of the boundary layer results in a large increase in the drag on 
the solid body. This can be understood by studying the inviscid 
flow over a cylinder. The pressure distribution is the same on 
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the upstream and downstream sides of the cylinder. Hence, 
thus, there are balanced forces on the cylinder and therefore no 
drag the d'Alembert's paradox. One of the most famous results 
of the inviscid flow theory is d'Alembert's paradox which states 
that a rigid body does not experience any drag in 
incompressible flow. It is well known that this contradiction is 
associated with the assumption of a fully attached form of the 
flow; this situation almost impossible in practice.  
       However, for viscous fluid, if the boundary layer separates 
from the cylinder, then the pressure on the downstream side of 
the cylinder is essentially constant, and equal to the low 
pressure on the top and bottom points of the cylinder. This 
pressure is much lower than the large pressure which occurs at 
the stagnation point on the upstream side of the cylinder, 
leading to a pressure imbalance and a large pressure drag on the 
cylinder. For high Reynolds number one might think that the 
viscosity could be ignored, however, once again encounter 
d'Alembert's paradox and therefore unable to balance and to 
explaining aerodynamic drag forces. The important insight in 
resolving this paradox is due to Prandtl (1904), who suggested 
that the viscosity could be ignored everywhere except in a thin 
layer close to the surface of a body. Understanding the behavior 
of this boundary layer has been crucial to the development of 
modern fluid mechanics. 
       The difference between a separated flow and its theoretical 
inviscid flow concerns not only the form of trajectories of fluid 
particles, but also the magnitudes of aerodynamic forces acting 
on the body. Boundary layers tend to separate from a surface of 
a solid body when there is an adverse pressure gradient that is 
increasing fluid pressure in the direction of the flow. For a large 
pressure gradient the shear stress can be reduced to zero, and 
separation often occurs. The fluid is no longer sticking on the 
wall, and opposing flow can develop which effectively 
separates the boundary layer off of the wall.  
       The study of flow separation from the surface of a solid 
body, and the determination of global changes in the flow field 
that develop as a result of the separation, are among the most 
fundamental and difficult problems of fluid dynamics. 
Separation imposes a considerable limitation on the operating 
characteristics of aircraft wings, helicopter, and turbine blades, 
leading to a significant degradation of their performance. It is 
well known that the separation is normally accompanied by a 
loss of the coefficient of lift, drastic increase of the drag, and an 
increase of the heat transfer at the reattachment region.  
       The traditional approach of studying the separation 
phenomenon for high Reynolds is based on seeking possible 
simplifications that may be introduced in the governing Navier-
Stokes equations. The first studies at describing separated flows 
past bluff bodies are due to Helmholtz (1868) and Kirchhoff 
(1869) in the manifest of the classical theory and application of 
non-viscous flows, but it was incomplete explanation as to why 
separation occurs. Prandtl (1904) who was the first to recognize 
the physical cause of separation at high Reynolds numbers as 
being associated with the separation of boundary layers that 
must form on all surfaces of the solid bodies.  
 
2 Theoretical Analysis 
The main problem here is to determine velocity field and the 
states of the fluid: its pressure, density, and temperature at all 
time and all space. There are six unknowns u, v, w, p, ρ and T. 

with four independent variables x, y, z, and t. Hence six 
independent equations for these six unknowns are needed.  

The equations for the conservation of mass, momentum, 
and energy, are written in terms of the dependent variables 
velocity, pressure and enthalpy. In steady laminar flow, the 
instantaneous value of a variable at any given position and time 
in space is equal to its mean value. 

Thermodynamic properties of a substance are not 
independent variables in a compressible flow. The manner in 
which any thermodynamic property is related to any two 
independent thermodynamic properties is referred to as an 
Equation of State. One equation of state for a perfect gas is the 
Ideal Gas Law: 

                RTp ρ=                                                     Eq. 1 
Where R is the universal gas constant divided by the molecular 

.2 Conservation of Mass 
resses the conservation of mass of 

weight of the fluid. This simple linear relationship is important 
for a wide class of gaseous problems at sufficiently high 
temperatures and low pressures. However, at low temperature 
and high pressure near phase change, significant error can 
result by using the perfect gas equation. At these conditions, the 
gas is considered to exhibit real gas effects. Several models 
exist to model real gases, such as Van der Waals equation and 
the compressibility correction factor. 
 
2
Equation of continuity exp
the medium. Conservation of mass requires that mass can 
neither be destroyed nor created. In many engineering 
applications sometime it is preferable to write the natural 
equation, by using the index notation, especially when dealing 
with numerical analysis. The continuity equation in index 
notation is therefore: 
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∂
∂

+
∂
∂

j
j

V
xt

ρρ
                                                  Eq. 2 

In this equation, jV  represents the three-dimensional velocity 

.1 Conservation of Momentum  
otion which express the 

vector components of the flow.   
 
2
There are three equations of m
conservation of momentum.  

( )Vm
dt
damF ==                                             Eq. 3 

The differential form of the momentum equation is: 
 

TF
Dt
VD

•∇+= ρρ                                                 Eq. 4 

Where T  is the stress tensor, and the constitutive model is: 
 

( ) eIVPT μλ 2+•∇+−=                                     Eq. 5 
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Where, p is thermodynamic pressure, λ is the bulk viscosity 

where ( μλ
3
2

= ), I  is the identity tensor and e , is the 

deformation tensor.  The momentum equation is therefore: 
 

( )( )[ eIVpF
Dt
VD μλρρ 2+•∇+−•∇+= ]       Eq. 6 

One may write the shear stresses (viscous forces) as: 
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The x-momentum therefore is: 
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The y-momentum therefore is:  
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The z-momentum therefore is: 
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                                                                                     Eq.15 
The momentum equation can be written in tensor form where 
the shear stress tensor is used. The shear stress (viscous) tensor 
for Newtonian (linear fluid) therefore is: 
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Where ijδ is the kronecker delta and ijδ =1 for i=j and ijδ =0 

for i≠j, the momentum equation in tensor form is: 
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                                                                                           Eq. 17 
The three terms on the right-hand side of Eq. 17 represent the 
x-components of all forces due to the pressure, p, the viscous 
stress tensor,τij , and the body force, fi .  
 
2.3 Conservation of Energy Equation     
The differential form of the energy equation is written in the 
same way as the continuity and the momentum equation, 
namely, by using Green’s theorem, hence: 
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Therefore the differential form of the total energy equation can 
be written in the following form, where the stress tensor is used 
and the assumption of the Newtonian fluid applied implicitly:  
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                                                                                            Eq. 19 
In some engineering applications, sometimes one wishes to deal 
with the internal energy alone or in another instance one may 
wish to evaluate the mechanism of transferring energy from one 
mode to another, such as in turbulent flow or in viscous 
situations therefore it will be helpful to develop the energy 
equation in terms of the internal energy alone. One way to 
derive the internal energy is to subtract the kinetic energy 
equation from the total energy equation.   

The kinetic energy equation is obtained by using the dot 
product between two vectors namely the momentum equation 
and the velocity vector. Therefore the kinetic energy equation 
is:        
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One may subtract the kinetic energy obtained from dotting the 
velocity vector with the three directions of the momentum, 
therefore the internal energy equation may be written as:     
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For compressible fluid, therefore: 

 

         
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Q

z
w

y
w

x
w

z
v

y
v

x
v

z
u

y
u

x
u

t
p

Tgradkdivuhdiv
t
h

zzyzxz

zyyyxy

zxyxxx

o
o

ρ

τττ

τττ

τττ

ρ
ρ

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

+
∂

∂
+

∂
∂

+

∂

∂
+

∂

∂
+

∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+

∂
∂

+=+
∂

∂
)()(

)(

                                       

                                                                                    Eq. 23 
In tensor form the energy equation therefore is: 
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Eq. 24 
Considering an infinitesimal control volume, the two terms on 
the left-hand side of this equation describe the rate of increase 
of ho and the rate at which ho is transported into and out of the 
control volume by convection. The first term on the right-hand 
side describes the influence of the pressure on the total 
enthalpy. The second term describes the rate at which work is 
done against viscous stresses by distortion of the fluid. The 
gradient of Q is the rate of energy transfer into the control 
volume by conduction, and the last term describes the rate of 
work done by body forces. 

If the Navier-Stokes equations do not hold an equation of 
the stress tensor must be found and solved simultaneously with 
the four basic equations. Even when the Navier-Stokes relations 
hold, the relation of the coefficient of viscosity must be given 
with respect to the state variables of the fluid such as 
temperature and density. 

There are many other cases where the basic equations of 
fluid dynamics are not sufficient or should be modified such as 
in the cases of the two-phase flow, multi-fluid flow theory, 
relativistic fluid mechanics and biomechanics. 

3 Numerical Analysis 
Now, after stating all the flow equations, mass, momentum, 
energy, and the constitutive laws that govern the transport 
relations, it is time to formulate a solution. But, since, these 
equations are coupled nonlinear, partial differential equations, it 
is impossible to have a closed form of solution. In order to 
formulate or approximate a valid solution for these equations 
they must be solved using computational fluid dynamics 
technique. In order to solve these equations numerically with a 
computer, they must be discretized. That is, the continuous 
control volume equations must be applied to each discrete 
control volume that is formed by the computational grid. The 
integral equations are substituted with a set of linear algebraic 
equations solved at a discrete set of points [11-15].  

In a finite element discretization the grid breaks up the 
domain into elements over which the changes of the fluid 
variables are evaluated. Adding all the variations for each 
element then gives an overall visualization of how the variables 
vary over the entire domain. The primary advantage of the 
finite element method is the geometric flexibility allowed by a 
finite element grid. In a finite volume discretization the grid 
breaks up the domain into nodes, each associated with a 
discrete control volume. The fluxes of mass, momentum, and 
energy for each control volume are then calculated at each 
node.  An advantage of the finite volume method is that the 
principles of mass, momentum, and energy conservation are 
applied directly to each control volume, so that the integral 
conservation of quantities is exactly satisfied for any set of 
control volumes in the domain. Thus, even for a coarse grid, 
there is an exact integral flux balance. 

A numerical analysis must start with breaking the 
computational domain into discrete sub-domains, which is the 
grid generation process. A grid must be provided in terms of 
the spatial coordinates (x, y and z location) of grid nodes 
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distributed throughout the computational domain.  At each node 
in the domain, the numerical analysis will determine values for 
all dependent variables including pressure, velocity components 
and temperature.   

The nodes must be distributed throughout the volume 
enclosed by the exterior boundary surface of the domain such 
that they form a complete three-dimensional matrix of nodes.  
Each node in the matrix will be referred to by the index triplet 
(i, j, k).    

 
     

Fig.1 Schematic view finite volume cell showing 
integration point, flux and node 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Flux Elements 
To complete the description of the distribution of nodes in the 
computational domain, it is useful to introduce the concept of a 
flux element.  A flux element, such as shown in Figure 1, is a 
linear, hexahedral element defined by eight nodes.  Conforming 
to the finite element approach, linear shape functions 
representing the variation of variables within the flux element 
are applied.   
       Each flux element has four octants for two-dimensional 
domain and eight octants for three-dimension region. The six 
sides of each octant are divided into two groups; those that are 
coincident with the flux element sides and those that are in the 
interior of the flux element. Because the latter group will form 
the surfaces of the control volume over which surface integrals 
will be evaluated, they are referred to as, integration point 
surfaces, as shown in Figure 1. 
 
3.2 Control Volumes 
In finite volume method a control volume exists for each node, 
with the boundary of each interior control volume defined by 
eight line-segments in two dimensions and 24 quadrilateral 
surfaces in three dimensions. To solve the governing or the 
natural equations that were derived in theoretical section they 
must be converted to their discrete or algebraic form.  
                                  
3.3 Discretization 
Discretization is the process whereby the governing equations 
are converted by their discrete form. Discretization identifies 

the node locations and flux elements to model the flow 
problem. The differential equations are transformed to 
algebraic equations, which should correctly approximate the 
transport properties of the physical processes.   

Next, the fluxes are evaluated at integration points, which 
are shared by adjacent control volumes. The same flux that 
leaves one control volume enters the next one. Thus, even with 
a low accuracy advection scheme numerical conservation is 
guaranteed. This is the fundamental advantage of a finite 
volume method.  The discretization is evaluated in an elemental 
basis.     
 
4 Results and Discussion 
Laminar flow control and flow separation-reduction have been 
considered as a potentially viable technique for increasing 
aircraft performance. Many studies have demonstrated that 
laminar flow control could reduce takeoff total weight, fuel 
weight, and structural temperatures [16-22]. 
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       Minimizing the pressure drag amounts to preventing or 
delaying boundary layer separation. Since adverse pressure 
gradients are the cause of separation. Trailing stagnation points 
are bound to cause problems, so separation can often be 
delayed by placing the trailing stagnation point so that the fluid 
can leave the body smoothly. [16-22] Another way of delaying 
separation is by forcing the boundary layer to become 
turbulent. The more efficient mixing which occurs in a 
turbulent boundary layer reduces the boundary layer thickness 
and increases the wall shear stress, often preventing the 
separation which would occur for a laminar boundary layer 
under the same conditions [16-20]. 
      One can see that there is a trade-off between the turbulent 
boundary layer and the laminar boundary layer. The turbulent 
boundary layer produces a greater drag due to skin friction, but 
can often reduce the pressure drag by preventing, or reducing, 
boundary layer separation. The turbulent boundary layer 
usually dominant at high Reynolds numbers, various schemes 
have been invented for producing turbulent boundary layers. 
[22-27] 
        In accordance with the Prandtl's theory, a high Reynolds 
number flow past a rigid body has to be subdivided into two 
characteristic regions. The main part of the flow field may be 
treated as inviscid. However, for all Reynolds numbers, no 
matter how large, there always exists a thin region near the wall 
where the flow is predominantly viscous. Prandtl termed this 
region the boundary layer, and suggested that it is because of 
the specific behaviour of this layer that flow separation takes 
place. Flow development in the boundary layer depends on the 
pressure distribution along the wall. If the pressure gradient is 
favourable, i.e. the pressure decreases downstream, then the 
boundary layer remains well attached to the wall. However 
with adverse pressure gradient, when the pressure starts to rise 
in the direction of the flow, the boundary layer tends to separate 
from the body surface. Since the velocity in the boundary layer 
drops towards the wall, the kinetic energy of fluid particles 
inside the boundary layer appears to be less than that at the 
outer edge of the boundary layer, in fact the closer a fluid 
particle is to the wall the smaller appears to be its kinetic 
energy. This means that while the pressure rise in the outer 
flow may be quite significant, the fluid particles inside the 
boundary layer may not be able to get over it. Even a small 
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increase of pressure may cause the fluid particles near the wall 
to stop and then turn back to form a recirculating flow region 
characteristic of separated flows.  
       There are many examples of fluid flows in technology and 
engineering where imposed boundary conditions or geometries 
results in flow separation. In applications where thermal effects 
are significant, such as cooling or insulating systems, such 
separations can have important consequences for the heat 
transfer properties of the system. Laminar flow control and 
flow separation-reduction have been considered as a potentially 
viable technique for increasing aircraft performance. Many 
studies have demonstrated that laminar flow control could 
reduce takeoff total weight, fuel weight, and structural 
temperatures [16-22]. 
       This paper will show flow over fuselage using active and 
passive designs. Active design uses a porous boundary 
condition, whereas, passive design without a porous boundary 
condition. A primary goal of the passive design is to obtain 
detailed surface pressure–distribution data. These data were 
obtained for a Mach range of 0.4 – 0.9. This paper 
demonstrated that laminar flow can be achieved on a blunt 
fuselage configuration for a Mach range of 0.4 - 0.9. Pressure-
distribution and transition data were obtained for a Mach range 
of 0.4 to 0.9. The results show that large regions of laminar 
flow can be achieved when active laminar flow control is used.  
       Figure 2 shows path lines for flow over fuselage with Mach 
number of 0.4 of an active design. One can see that the flow is 
attached to the surface of the body almost every where, on the 
other hand figure 3 shows path lines for passive design where it 
is evident that the flow is separated from the top surface. 

 
Fig.2 Path lines for flow over fuselage Mach =0.4 with 

active design 

 
 

Fig.3 Path lines for flow over fuselage Mach =0.4 with 
passive design 

 
 

Figure 4 shows velocity vectors of the active design for flow 
over fuselage with Mach number of 0.4 where one can see the 
direction of the flow as it flows over the body. Figure 5 shows 
velocity vector for flow over fuselage with passive design; one 
can see the circulation of the flow in regions of the separated 
flow. 
 
 
 

Fig.4 Velocity vectors for flow over fuselage Mach =0.4 
with active design 

 
 
 

Fig.5 Velocity vectors for flow over fuselage Mach =0.4 
with passive design 

 
 

 
 
Figure 6 shows path lines for flow over a fuselage with active 
design of Mach number of 0.9, one can see that the flow is 
attached to the body. Figure 7 shows path lines for the flow 
over fuselage with passive design of Mach number of 0.9, one 
can see that the flow is separated from the body. Figure 8 
shows flow over fuselage with active design but one can see 
there is some circulation and separation in the flow. One can 
conclude from this study that the porous boundary condition 
should be at least 2/3 of the incoming free stream velocity and  
in the axial direction. 
       Figure 9 shows contour plots of Mach number of flow over 
fuselage with active design of Mach number of 0.9, one can see 
the shock wave is generated on the top surface. Figure 10 
shows contour plot of Mach number of flow over fuselage with 
passive design of Mach number of 0.9; one can see the shock 
wave is generated on the top surface of the solid body.  

 
 

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp194-201)

http://www.city.ac.uk/sems/mathematics/research/fluids/thermalconv.html


 
Fig.6 Path lines for flow over fuselage Mach =0.9 with 

active design 

 
 

Fig.7 Path lines for flow over fuselage Mach =0.9 with 
passive design 

 
 

Fig.8 Path lines for flow over fuselage Mach =0.9 with 
active design different velocity 

 
 

Fig.9 Contour Plot flow over fuselage Mach =0.9 with 
active design 

 
 
 

Fig.10 Contour Plot flow over fuselage Mach =0.9 with 
passive design 

 
 
5 Conclusion 
The study of flow separation from the surface of a solid body, 
and the determination of global changes in the flow field that 
develop as a result of the separation, are among the most 
fundamental and difficult problems of fluid dynamics. Laminar 
flow control and flow separation-reduction have been 
considered as a potentially viable technique for increasing 
aircraft performance. Many studies have demonstrated that 
laminar flow control could reduce takeoff total weight, fuel 
weight, and structural temperatures. 
       Minimizing the pressure drag amounts to preventing or 
delaying boundary layer separation. Since adverse pressure 
gradients are the cause of separation, one wants to avoid these 
or at least make the gradients small. This paper shows that 
slower moving air on the upper surface can be increased in 
speed by bringing air from the high pressure area on the bottom 
of the fuselage through slots. Pressure will decrease on the top 
so the adverse pressure gradient which would cause the 
boundary layer separation reduces. One can conclude from this 
study also that the porous boundary condition should be at least 
2/3 of the incoming free stream velocity and in the axial 
direction. 
 
6 Acknowledgments 
The author gratefully acknowledges sponsorship of this 
research from the Space Research Institute of the King 
Abdulaziz City for Science and Technology. 

REFERENCES 
[1] Stewartson, K. and Williams, P.G. (1969) Self induced 

separation. Proc. Roy. Soc. London, A312, pp 181-
206.  

[2]  Neiland, V. Ya. (1969) Towards a theory of 
separation of the laminar boundary layer in a 
supersonic stream." Mekh. Zhid. Gaza, 4, pp 53-57 
(English translation in Fluid Dynamics, 4, pp 33-35)  

[3] Messiter, A.F. (1970) Boundary layer flow near the 
trailing edge of a flat plate. SIAM J. Appl. Math. 18: 
241-257.  

[4] Stewartson, K. (1981) D'Alembert's paradox. SIAM 
Rev., 23, pp 308-43.  

[5] Messiter, A.F. (1983) Boundary layer interaction 
theory. Trans. ASME J. Appl. Mech., 50, pp 1104-13.  

[6] Rothmayer, A.P. and Smith, F.T. (1998) Free-
Interactions and Breakaway Separation and Numerical 

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp194-201)

http://www.ras.ru/win/db/show_per.asp?P=.id-851.ln-en
http://links.jstor.org/sici?sici=0036-1399%28197001%2918%3C241%3ABFNTTE%3E2.0.CO%3B2-W
http://links.jstor.org/sici?sici=0036-1399%28197001%2918%3C241%3ABFNTTE%3E2.0.CO%3B2-W
http://links.jstor.org/sici?sici=0036-1399%28197001%2918%3C241%3ABFNTTE%3E2.0.CO%3B2-W
http://links.jstor.org/sici?sici=0036-1445%28198107%2923%3C308%3ADP%3E2.0.CO%3B2-Z
http://links.jstor.org/sici?sici=0036-1445%28198107%2923%3C308%3ADP%3E2.0.CO%3B2-Z


Solution of Two-Dimensional Steady Triple-Deck 
Problems in The Handbook of Fluid Dynamics  

[7] Smith, F.T. (1986) Steady and unsteady boundary 
layer separation. Ann. Rev. Fluid Mech., 18, pp 197-
220.  

[8] Sychev, V.V. (1990) Asymptotic theory of boundary 
layer separation. Nauka, Moscow, Russia.  

[9] Sychev, V.V., Ruban, A.I., Sychev, V.V. and Korelev, 
G.L. (1998) Asymptotic theory of separated flows. 
Cambridge University Press.  

[10] Sobey, I.J. (2000)Introduction to Interactive Boundary 
Layer Theory. Oxford University Press.  

[11] Alhussan, K., “Computational Analysis of High Speed 
Flow over a Double-Wedge for Air as Working Fluid", 
Proceedings of FEDSM2005 ASME Fluids 
Engineering Division Summer Meeting and Exhibition 
FEDSM2005-77441 June 19-23, 2005, Houston, TX, 
USA. 

[12] Alhussan, K.," Study the Structure of Three 
Dimensional Oblique Shock Waves over conical rotor-
Vane surfaces", Proceedings of FEDSM2005 ASME 
Fluids Engineering Division Summer Meeting and 
Exhibition FEDSM2005-77440 June 19-23, 2005, 
Houston, TX, USA. 

[13] Alhussan, K. ," Oblique Shock Waves Interaction in a 
Non-Steady Three Dimensional Rotating Flow", 
Proceedings of FEDSM2005 ASME Fluids 
Engineering Division Summer Meeting and Exhibition 
FEDSM2005-77442 June 19-23, 2005, Houston, TX, 
USA. 

[14] Alhussan, K., “Application of Computational Fluid 
Dynamics in Discontinuous Unsteady Flow with 
Large Amplitude Changes; The shock Tube Problem” 
IASME Transaction Issue 1 Volume 2, pp 98-104, 
January 2005. 

[15] Alhussan, K. “Supersonic Flow over Blunt Body with 
a Decelerator” IASME Transaction Issue 3 Volume 1, 
98-104,   August 2005. 

[16] Powell, A. G., S. Agrawal, and T. R. Lacey, 
Feasibility and Benefits of Laminar Flow Control on 
Supersonic Cruise Airplanes, NASA CR-181817, 
1989. 

[17] Boeing Commercial Airplane Company, Application 
of Laminar Flow Control to Supersonic Transport 
Configurations, NASA CR-181917, 1990. 

[18] Pfenninger, Werner and Chandra S. Vemuru, “Design 
Aspects of Long Range Supersonic LFC Airplanes 
with Highly Swept Wings,” SAE-881397, Oct. 1988. 

[19] Anderson, Bianca T. and Marta Bohn-Meyer, 
Overview of Supersonic Laminar Flow Control 
Research on the F-16XL Ships 1 and 2, NASA TM-
104257, 1992. 

[20] Anderson, Bianca T., Bruce H. Rowan, and Stephen F. 
Landers, F-16XL Supersonic Laminar Flow Control 
Glove Initial Flight Test Results, NASA TM-104270, 
1993. 

[21] Landers, Stephen F., John A. Saltzman, and Lisa J. 
Bjarke, F-16XL Wing Pressure Distributions and 
Shock Fence Results from Mach 1.4 to Mach 2.0, 
NASA TM-97 206219, 1997. 

[22] Anders, Scott G. and Michael C. Fischer, F-16XL-2 
Supersonic Laminar Flow Control Flight Test 
Experiment, NASA TP-1999-209683, 1999. 

[23] J. D, Anderson, Introduction to Flight (New York: 
McGraw-Hill, 1989).  

[24] M. van Dyke, An Album of Fluid Motion (Stanford, 
Calif.: Parabolic Press, 1982).  

[25] R. P. Feynman, The Feynman Lectures on Physics 
(Redwood City, Calif.: Addison-Wesley, 1989), Vols. 
II, Chap. 41.  

[26] Melissinos, Principles of Modern Technology (New 
York: Cambridge University Press, 1990). 

[27] J. S. Trefil, Introduction to the Physics of Fluids and 
Solids (New York, Pergamon Press, 1975).  

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp194-201)

http://www.crcpress.com/
http://www.ras.ru/win/db/show_per.asp?P=.id-780.ln-en
http://uk.cambridge.org/engineering/catalogue/0521455308/default.htm

	Nomenclature 
	1 Introduction 
	 
	2 Theoretical Analysis 
	2.2 Conservation of Mass 
	 
	2.1 Conservation of Momentum  
	2.3 Conservation of Energy Equation     
	3 Numerical Analysis 
	 
	 
	 
	 
	 
	 
	3.1 Flux Elements 
	 
	3.2 Control Volumes 
	3.3 Discretization 
	 
	4 Results and Discussion 
	 
	5 Conclusion 
	6 Acknowledgments 


