
Some Approximate Analytical Steady-State Solutions 
for Cylindrical Fin  

 
ANITA BRUVERE, ANDRIS BUIKIS 

Institute of Mathematics and Computer Science 
University of Latvia 

Raina bulv. 29, Riga, LV1459 
LATVIA 

 
 

Abstract: - In this paper we construct some approximate analytical three-dimensional solutions for one 
element of cylindrical wall and fin. We assume that the heat transfer process in the wall and the fin is 
stationary. These solutions are obtained by the original method of conservative averaging and they are 
compared to some one-dimensional solutions, which are well known in literature. We give some criterions 
when it is possible to replace three-dimensional formulation of problem with two- or one-dimensional 
statement. 
 
Key-Words: - steady-state, three-dimensional, heat exchange, cylindrical fin, analytical solutions, conservative 
averaging. 
 
 
1 Introduction 
Obtaining efficient cooling for the components of 
devices is a difficult challenge in modern industry. It 
is related to refrigerators, radiators, engines and 
modern electronics, etc.  
Usually its mathematical modeling is realized by 
one dimensional steady-state assumptions [1],[5]. In 
our previous papers we have constructed two 
dimensional analytical approximate [2]-[4] and 
exact [3] solutions. In this paper we obtain few new 
approximate analytical three dimensional solutions 
by the original method of conservative averaging 
and some its simplifications (special cases).  
In [1] the so-called Murray – Gardner assumptions 
are formulated. They are: 
1) The heat flow in the fin and the temperature at 
any point on the fin remain constant with time; 
2) The fin material is homogeneous; its thermal 
conductivity is the same in all directions and 
remains constant; 
3) The heat transfer coefficient between the fin and 
the surrounding medium is uniform and constant 
over the entire surface of the fin; 
4) The temperature of the medium surrounding the 
fin is uniform; 
5) The fin width is so small compared with its height 
that temperature gradients across the fin width may 
be neglected; 
6) The temperature at the base of the fin is uniform; 
7) There are no heat sources within the fin itself; 

8) Heat transfer to or from the fin is proportional to 
the temperature excess between the fin and the 
surrounding medium; 
9) There is no contact resistance between fins in the 
configuration or between the fin at the base of the 
configuration and the prime surface; 
10) The heat transferred through the outmost edge of 
the fin (the fin tip) is negligible compared to that 
through the lateral surfaces (faces) of the fin.    
 
 
2 Mathematical Formulation of 3D 
Problem and reduction to 2D 
We will start with accurate three-dimensional 
formulation of steady-state problem for one element 
of periodical system for cylindrical wall and fin. The 
one element of the wall (base) is placed in the 
domain [ ] [ ] [ ]{ }φϕ ,0,,0~,,~

0 ∈∈∈ ZzRRr  and we 

describe temperature field ),~,~(~
0 ϕzrV  in the wall 

with the equation: 
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The cylindrical fin of length L occupies the domain 
[ ] [ ] [ ]{ }0, , 0, , 0,r R R L z Z ϕ φ∈ + ∈ ∈% %   

and the temperature field ),~,~(~ ϕzrV  fulfills the 
equation: 
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And we have following boundary conditions in 
accordance with M-G point 5) in ϕ  direction  
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We can reduce problem (1) and (2) from 3D to 2D 
using following average integral for argument ϕ  
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2.1 Description of Temperature Field in the 

Wall 
We will use following dimensionless arguments, 
parameters, to transform our problem to 
dimensionless problem: 
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Here )( 0kk - heat conductivity coefficient for the fin 

(wall), )( 0hh - heat exchange coefficient for the fin 

(wall), 0Z  - width (thickness) of the fin, L  - length 

of the fin, Z - thickness of the wall, bT  - the 
surrounding temperature on the left (hot) side (the 
heat source side) of the wall, aT  - the surrounding 
temperature on the right (cold - the heat sink side) 
side of the wall and the fin and ( , )U r z%  ( )0( , )U r z% . 

One element of the wall (base) placed in the domain 
now is [ ] [ ]{ }1,0,,0 ∈∈ zr δδ  and we can describe 

the dimensionless temperature field ),(0 zrU  in the 
wall with the equation: 
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We add needed boundary conditions as follow: 

( ) 01 0
0
0

0 =−+
∂
∂ U

r
Ur β , 0δ=r , ]1,0[∈z , (6) 

000
0 =+

∂
∂ U

r
Ur β , δ=r , ]1,[bz∈ .  (7) 

And homogeneous boundary conditions 
0 0

0 1

0
z z

U U
z z= =

∂ ∂
= =

∂ ∂
, ],[ 0 δδ=r .  (8) 

We assume the conjugations conditions on the 
surface between the wall and the fin as ideal thermal 
contact - there is no contact resistance: 
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2.2 Description of Temperature Field in the 

Fin 
The cylindrical fin of length l  occupies the domain 

[ ] [ ]{ }bzlr ,0,, ∈+∈ δδ  and the temperature field 
),( zrU  fulfills the equation 
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We have following boundary conditions for the fin: 
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And homogeneous boundary conditions 
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3 Approximate Solution of 2D 
Problem for Periodical System 
We will use the original method of conservative 
averaging. We will start with the case of periodical 
system with cylindrical fins 
 
3.1 Reduction of the 2D Problem for the Fin 
Similarly as in papers [2],[4] we will use original 
method of conservative averaging and approximate 
the 2D temperature field ),( zrU  for the fin in 
following form: 
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with three unknown functions ( ) 2 ,1 ,0 , =irfi . For 
this purpose we introduce the integral average value 
of function ),( zrU  in the z - direction:  

∫=
b

dzzrUru
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),()( ρ .                                          (15) 
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This equality together with two boundary conditions 
(at 0z = and bz = ) allow us to exclude all the 
unknown functions ( )rfi  from the representation 
(14). The boundary condition (13) for the function 

),( zrU  at 0=z  gives immediately the equality 
)()( 21 rfrf −= . The substitution of representation 

(14) in (15) gives expression: 
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Finally, by the use of the boundary condition (11), 
we can exclude )(0 rf  from last expression and 
represent the 2D solution ),( zrU  for the fin in 
following form: 

( , ) ( ) ( )U r z u r z= Φ .               (18) 
It is easy to check that the function ( )zΦ looks like 
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The second stage for the method of conservative 
averaging is to transform the partial differential 
equation (15) for the function ( , )U r z  to the 
differential equation for one arguments function 

( )u r . To realize this goal we integrate the main 
differential equation (10) in the z - direction, and 
using (15) get: 
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By using the boundary condition (13) at 0z =  for 
the function ),( zrU  and expressing from the 
boundary condition (11) at bz =  the first derivative 

z
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∂

 trough the function ),( zrU  we obtain 

following differential equation: 
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It remains to express in differential equation (21) the 
function ),( zrU  through the function )(ru  with 
the help of the equality (18) and we receive the new 
differential equation, which describes the 1D 
dimensional temperature field )(ru  in the fin:  
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Solving differential equation (22) we gain solution 
through Bessel’s modified functions 00 , KI : 
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And from (18) and (24) we get solution for fin 
which includes only one unknown constant 1C  

( ) )()()(),( 0011 zrKrICzrU Φ+= μμμ .          (26) 
 
3.2 Reduction of the 2D Problem for the 

Wall 
We will use same method of conservative averaging 
and approximate the 2D temperature field ),(0 zrU  
for the fin in following form: 
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with three unknown functions ( ) 2 ,1 ,0 , =izgi . For 
this purpose we introduce the integral average value 
of function ),(0 zrU  in the r  - direction:  
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This equality together with equality (27): 
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Finding derivation of (27) and using boundary 
condition (6) we get 
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Express function )(2 zg  from equation (29) and put 
to expression (30) gives 

1010111 )()()( DzuBzgAzgK +−= ,                  (31) 
where  
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Express function )(1 zg  from equation (29) and put 
to expression (30) gives 
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Now we still have two unknown functions )(0 zg  
and )(0 zu . Therefore we will use different 
boundary and conjugations conditions on the wall to 
exclude these functions. 
 
3.3.1 Solution for upper Wall 
Putting (34) to boundary condition (7) we get 
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Putting (35) in (33) we get 
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Now integrating partial differential equation (5) and 
taking account equation (28) get 

02
2
0

2
0

2
0

2
0

=+
∂
∂

− dz
ud

r
Ur

δ

δδδ
.              (37) 

Using boundary conditions (2), (3) and (33) 
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Solution of differential equation (38), using 
boundary condition (11) looks as follows 
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As we can see we have solved function )(0 zu  and 
now problem reduces to the problem of finding 
constant 2C . 
 
3.3.2 Solution for lower Wall 
Using equation (34) and (26) and putting them in to 
conjugation condition (9) at value δ=r  
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We can continue with equation (40) and (41) and get 
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But from (9), (41) and (43) we get 
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Now submitting equations (41) and (42) in equation 
(37) we get differential equation 
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Solution of differential equation looks following 
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From condition (8) and (47) follows that constants 
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putting together (34), (42) and (48) we get 
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Now solution for wall contains only two unknown 
constants 1C  and 3C . 
 
3.4 Solution 
We have two additional conditions on function 

)(0 zu , respectively 
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Also in point ( )b,δ  values of functions ),(0 zrU  
and ),( zrU  must be equivalent 
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And to satisfy equation (52) we will use equations 
(26) and (36) 
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And now problem reduces to solution of three 
linear equations (53), (54) and (55) for three 
unknown constants 3,2,1, =iCi . 
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After solving system (56) we can put constants 
3,2,1, =iCi  to equation (27) or (49) and calculate 

value of temperature at any point of our 2D domain. 
 
4 1D Solution as the Simple Case of 
the 3D Solution 
Using following integral values for equations (5) 
and (8) 
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The solution of problem (59)-(65) can be written in 
following form: 

0 1 2

3 0 4 0

( ) ln

( )

v r C r C

v r C I r C K r
b b
β β
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⎪

⎛ ⎞ ⎛ ⎞⎨ = +⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎩

,                   (66) 

where 00 , KI  is Bessels’ modified functions. 

Here the four unknown constants can be easy 
determined from the four boundary and conjugations 
conditions (61)-(64): 
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       (67) 

 
5 Conclusion 
We have constructed some approximate three 
dimensional analytical solutions for a periodical 
system with cylindrical fin when the wall and the fin 
consist of materials which have different thermal 
properties. 
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