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Abstract: - In this work, implicit numerical method for solving 2D and 3D-dimensional fluid mechanics, heat 
and mass transfer equations is presented. Discretization of governing equations is carried out on the base of 
monotonous balance neutral (MBN) difference schemes which allow to keep some important integral properties 
of differential operators. A difference equation for pressure is derived from the difference continuity and mo-
mentum equations. The discrete equations obtained are nonlinear so linearization is introduced and implicit sta-
bilization iterative procedure is developed for yielding convergent solution. Explicit incomplete factorization 
method is employed for solving linearized momentum, heat and mass transfer difference equations and a vari-
ant of the method using Chebyshev acceleration is applied  for solving pressure equation. Results of 2D two-
phase flow and 3D natural convection numerical studies are presented. 
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1   Introduction 
Implicit numerical technique [1-2] was successfully 
employed in analysing fluid mechanics, heat and 
mass transfer problems mainly for incompressible 
forced convection flows. At present method is devel-
oped for numerical prediction of natural and mixed 
convection problems, two-phase flows and others.  

In general case, fluid dynamics processes are 
governed by a system of partial differential equations 
which involves continuity, momentum, heat and 
mass transfer equations, state equation etc. In a vec-
tor form continuity equation and equations of motion 
(Reynolds equations) may be written as follows: 
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Momentum equations have been formulated ac-
counting for the Bossiness hypothesis between stress 
tensor jip  and velocity deformation tensor jiε  
components 
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where ρ is a density, tm µµµ +=  – a coefficient of 

molecular and turbulence viscosity, jig are compo-
nents of the Euclidean metric tensor, p is a pressure, 
K – a turbulent kinetic energy, U

�
– a velocity vector, 

ΥΥΥΥ – the tensor of velocity deformation, F
�

 – a body 
force vector.  

If heat transfer processes are under consideration 
than system (1)-(3) is added by an energy equation 
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where h is a enthalpy, vq  - a volumetric heat genera-
tion, q

�
 – a heat flux. 

 
 
2   Difference Approximations 
Discretization of governing equations is carried out 
using monotonous balance neutral (MBN) difference 
schemes which allow to keep some important inte-
gral properties of differential operators. A derivation 
MBN difference scheme is based upon joint consid-
eration of continuity equation and transfer equation.  

For the sake of simplicity, consider the following 
system in a bounded domain Ω 
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A substance ϕ  may be a velocity component, an 
enthalpy, a concentration, etc. A monotonous 
schemes simulate important property of a fluid flow 
as a downstream transfer of some disturbance due to 
a convection motion. A balance (conservation) prop-
erty is a discrete analogue of the Ostrogradski-Gauss 
theorem: 
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where e
�

 is the unit vector normal to the boundary 
Σ.. Another property of the operator )(ϕΛ  concerns 
null contribution of the terms describing connection 
transfer to the energy dissipation law. Neutral behav-
iour may be formulated in the form of the integral 
relationship,  
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The account of the property (8) is especially impor-
tant during long-time numerical simulation of fluid 
dynamics problems. 

Grid points and grid spacings are defined in a 
regular region )( Π∈ΩΠ as: 
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where )k,...,k(k n1= is a multi–index m – a time 

step number, mt∆ - a spacing of time discretization, 
In the following formulas the shortened notations of 
grid function are used: 
 kk,...,k,...k ni

ϕϕ ≡
1

, ikk,...,k,...k ni +± ≡ ϕϕ 11
, 

2211 /ikk,...,/k,...k ni ±± ≡ ϕϕ , 

 ),...,,...,()jor(i 010=  is a multi- index, having unit 
in the i(or j)–position. The equation (9) is not 
directly included in the implicit iterative procedure 
but is the base for derivation of pressure difference 
equation.      

Pressure, temperature, concentration are 
computed in the centres of elementary volume 
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velocity vector - in the centres of faces. Both the 
MBN–scheme and a displacement of coordinates of 
a grid functions enable to obtain physically realistic 
fields of computed values.  
     Difference continuity equation is written as  
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Transfer equation (6) is integrated over an ele-
mentary volume shifted in a i-direction (in compari-
son with eV ) 
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jiδ  – Kronecher’s symbol. MBN approximation of 
equation (6) has the following form: 
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written in the following finite difference form: 
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In practical calculations function )1cth( −αα  
in (12) may be replaced with easily computed 

expression )(/ 23 11cth ααααα ++≈− . 
 
 
3   Linearization Procedure and Im-

plicit Stabilization Method  
A pressure discrete equation is obtained using 
momentum difference equations in the form (10) and 
difference continuity equation (9). In this case sub-

stance ϕ  is a velocity component iu and right part of 

(6) contains
ix

p

∂
∂− . A general form of pressure 

discrete equation can be presented as  

kkh
m

m
k

m
k

n

k f)p(P
t

h =+−
�
�

�

�

�
�

�

� +

=
∏ ∆

ρρ

β

β
β

1

1

,         (13) 

jk
j

k

n

j
jk

j
kkkkh pbpapc)p(P +

=
− +−= �

1

. 

Thus, hydrodynamics discrete problem involves 
non-linear equations for velocity components, for 
pressure and in general case state equation.  

Implicit stabilization method is developed for 
solving non-linear system of difference equations. 
Linearizing is carried out in such a way that operator 

A becomes linear relatively to 
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+ is known, index “L” denotes a 

number of iteration or a number of stabilization step. 
Implicit numerical procedure is written as follows 
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where Lτ  is a step of stabilization. It should be 

noted that linear operator hP  is self-adjoint 

because j
k

j
jk ba =+ . 

Successful practical realization of the implicit 
numerical algorithm depends on a method for 
solving linear difference equations, first of all ill-
conditioned pressure equation. Computational diffi-
culties have been overcame with the usage of 
incomplete factorization method, first suggested by 
Buleev [3].  

Implicit numerical procedure for prediction of 
pressure and velocity fields involves the following 

stages of calculations. Using 
miu , 

L,miu
1+

1 ni ≤≤ from the previous iteration 
coefficients of difference equations are calculated. 
Employing incomplete factorization method with 
Chebyshev acceleration [2] self-adjoint pressure 
equation is solved and using ordinary variant of the 
method we calculate velocity components. Iterations 
on the current time layer are stopped when a preset 
accuracy ς  of fulfilment of difference continuity 
equation is reached: 
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4   Numerical Modeling of Turbulent 

Two-Phase bubble flow  
Developed implicit numerical method in two-
dimensional case have been realized as FLUID2D 
code. The code has found various applications and 
one of them is numerical prediction for turbulent 
two-phase flow with “saddle”-shape void fraction 
profile. The recent experimental investigations (e. g. 
[4–6]) in a local characteristics complex study of 
bubble non-equilibrium two-phase flows have 
revealed, in particular, the effects of anomalous wall 
friction factors and heat transfer coefficients increase 
in the conditions with predominantly wall 
concentration (void peak) of gas (vapor) phase at low 
velocities of forced flow. Due to non-uniform 
distribution of gas over the tube cross section in 
upward gas-liquid flows, wall shear stresses can be 
by 2÷9 times higher than for single-phase flow.  

Mathematical and numerical modeling of above 
mentioned regimes of gas-liquid flows is compli-
cated problem, so one purpose of numerical 
investigations is to obtain velocity, pressure fields 
and shear stresses using experimental radial void 
fraction profiles. Two-phase flow density is calcu-
lated as gf ραραρ +−= )1( , where α - void frac-

tion, gf d ρρ an  – density of fluid and gas 

correspondingly. Hydrodynamics equations are writ-
ten in the (r-z) –geometry for the round pipe of 
radius R.  

Turbulent viscosity tµ  is subdivided into the two 
components 21 µµµ +=t , one 1µ due to inherent 

liquid turbulence independent of relative motion of 
bubbles and the other 2µ  due to the additional turbu-
lence caused by bubble agitation. More detailed 
mathematical model is described in [7-8]. 

It should be noticed that boundary layers are very 
thin therefore correct shear stress description de-
mands detailed grid near wall. Implicit  numerical 
method allows to employ high irregular grid with 
logarithmic compressibility in the boundary layers 
zones. Some results of numerical studies for two-
phase upward bubble flow are presented in fig. 1-3. 
The velocity profile, the radial void fraction distribu-
tion in the outlet cross-section of the pipe (diameter 
86.3 mm) are shown in Fig. 1. Entrance fluid veloc-

ity is m/s 0.79=fU , volumetric void fraction 

β=0.118.  
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Fig. 1: Liquid axial velocity and void fraction pro-
file;� - calculation,  - experimental data; 

       - - - –void fraction. 
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Fig. 2: Relative friction factor; 
1 – calculation, 2- experiment. 
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Fig. 3. Liquid axial velocity, R=21 mm, β=0.02, 
m/s 0.82=fU ; � - calculation,  - experiment. 
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Relative friction factor presented in fig 2 shows 
essential increase in comparison with Blasius factor 
for single–phase flow. Numerical results are in the 
satisfactory agreement with experimental data [4].  

In fig. 3 velocity profiles are presented in dimen-
sionless form, where  Y=1 – r/R,  
 m/uYY µρ τ=+  – dimensionless coordinate, 

ρττ /u w= - friction velocity; wτ  – wall shear 

stress; τu/uu z=+ - friction scale velocity. 

It can be seen that numerical model describes bound-
ary layer zone with good accuracy up to 1<+Y . 
 
 
5   Numerical Results for 3-D Convec-

tion Benchmark Problem  
Three-dimensional case of implicit numerical 
method is realized as FLUID3D code. As a test of 
the numerical method and the code benchmark com-
putations have been performed. The papers [9, 10] 
contains experimental results for heat convection in a 
cubical air-filled enclosure. This problem is sug-
gested as 3-D benchmark exercise. A sketch of the 
experiments [9, 10] is shown in Fig. 4.  

 
Fig. 4. Schematics of the cubical cavity benchmark. 

Width of the cubic is L=0.1272m, the inclination 
angle ϕ  is set to 0°, 45°, and 90°, the cube sidewall 
temperature varies linearly from cold face to hot 
face, K 300=cT , K 307=hT . Gas properties are 
evaluated at the mean temperature K 303.5=mT , 
Pr=0.71, the pressure is equal to the pressure that 
gives the desired Rayleigh number.  

Calculations are conducted using uniform and 
non-uniform grids and different number of grid 
nodes: 403, 603, 1003. Some numerical results and 

comparisons are presented in the table 1 and fig. 5-8.  

   Table 1. Average Nusselt Number results  

ϕ Ra Exp. Nu 
[9, 10] 

Present 
paper [11] [12] 

90 
106 6.383 ± 

0.070 
6.51 7.20- 

7.33 6.43 

90 
107 12.98 ± 

0.16 
13.13 16.62- 

16.94 13.10 

90 
108 26.79 ± 

0.34 
26.54 37.92- 

38.39 24.99 

45 
106 8.837 ± 

0.101 
9.04 8.52- 

8.63 8.61 

45 108 34.52 ± 
0.42 32.02 44.67- 

44.83 28.35 

0 
106 7.883 ± 

0.091 
7.77-
7.96 

7.31- 
7.42 7.57 
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Fig. 5. Flow patterns in the plane z=0.5, 

610,90 =°= Raϕ . 
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Fig. 6. Distribution of the local Nusselt number on 

the cold wall, 710,90 =°= Raϕ . 
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Fig. 7. �emperature contours in the plane z=0.5, 

610,45 =°= Raϕ . 
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Fig. 8. Average Nusselt number on the cold wall, 

610,0 =°= Raϕ  
 
 
6   Conclusion 
Implicit numerical method for solving 2D and 3D-
dimensional fluid mechanics, heat and mass transfer 
equations is described. Implicit method is stable and 
convergent, enables to enlarge time step and reduce 
computational expenditures. Presented results of 2D 
two-phase flow and 3D natural convection numerical 
studies show potential possibilities of the method. 
Good agreement with experimental data is reached. 
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