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Abstract: - improvement of the random vortex method (RVM), a numerical scheme that combines the 

representation of the vorticity field by a number of Lagrangian vortex elements of finite cores with a stochastic 

simulation of diffusion using random walk, is investigated. Multiple scales method Base on Rankin vortex 

model, used to derive different orders of vorticity transport equation, and physical description of terms 

presented. This new aspect presents the reason of limitation of vortex method and explains how it is possible 

to develop this method, base of understanding of physical behavior of flow in various conditions. Base on this 

view point it is possible to explain why vortex method in some of applications don’t have satisfying Results. 
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1   Introduction 
Many of researchers have used various vortex 

methods for studying different types of fluid flow 

problems. A.J. Chorin [1] has presented the random 

vortex method for solving the time-dependent 

Navier-Stokes equation in two dimensions at high 

Reynolds number and an application to flow past a 

circular cylinder. He used distribution of vortex 

blobs as a model of vortex generation to satisfy no-

slip condition on the wall. This model has been 

expanded for different applications by other 

researchers. In other works, A.J. Chorin [2] carried 

out the boundary layer simulation. He used 

distribution of vortex sheets as a model of vortex 

generation near the walls. The accuracy of the 

results far from the wall is acceptable, but the near 

wall solutions are not reliable. The main reason of 

this deficiency can be the mechanism of vorticity 

generation. Ghoniem, Chorin and Oppenheim [3] 

considered a correction to the zone of influence of a 

vortex sheet for improving the near wall solution. 

Ghoniem and Cagnon [4] discussed the effect of 

some numerical parameters such as initial strength 

of vortex sheets and number of vortices in the rate of 

convergence of laminar recalculating flow. They 

have shown that the rate of convergence is a 

function of initial strength of vortex sheets and the 

number of vortices.  

     The general aspects of the results have a good 

agreement with the experimental data, but the local 

velocity profiles near the walls are inaccurate. In 

other investigation, A.J. Chorin [5] considered that 

vortex sheets transform to blob when sheets find 

themselves out of a specified position and time. The 

simulations indicate that in special conditions, the 

results were insensitive to the computational 

parameters. Hou [6] and Henri Cottet et al. [7] have 

studied the accuracy of vortex method by using 

variable size vortex particles. 

     In summary, the model of vortex generation in 

RVM is based on no-slip condition along a line 

segment on the boundary by producing the vortex 

sheet. If the vortex sheets jumped out from a 

specified distance near the wall, they will transform 

to vortex blob. Otherwise, they will stay in new 

random position and remain in vortex sheet pattern 

[8]. Generation, distribution of vortex sheets, their 

amount of strength and another important parameter 

in this method have significant effect on the flow 

field properties like as velocity profile or local shear 

stress in vicinity of the wall. In general, this method 

does not detect accurate velocity profile specially in 

vicinity of the wall, and various flow regimes and 

the average velocity profiles in this region are 

inaccurate. This method of vortex generation in 

some applications that local velocity and skin 

friction near the wall is important is not applicable. 

     Recently new approaches in Vortex method 

introduced and used to more precision results and 

using in more complex flow fields, e.g. Nouri and 

Ebrahimi used new method to vortex generation [9] 

and  Nouri and Eslami developed a method to add 

free stream turbulence base on vortex method [10], 

also Ramachandran study and developed High 

resolution two dimensional Random vortex [11].   
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     In present paper, new aspect to random vortex 

method base on Rankin vortex model and multiple 

scale method developed. This aspect describes when 

separation of diffusion and convection terms in N-S 

equation, which is a usual method used in RVM, is 

allowable and how it is possible to do. This 

description is against normal usage of RVM which 

in all of cases separate part of diffusion and 

convection phenomena terms without care to flow 

properties. 

 

 

2 Problem Formulation 
In present research, trajectory of a spinning disk in a 

uniform stream flow, studied to get a clear physical 

understanding of the highly oscillatory motion of a 

Rankin vortex about its mean trajectory, later the 

same analogy employed to description of the motion 

of a vortex with a vortical core to get important time 

scales in Rankin vortex model. Base on these time 

scales the N-S equation expanded, diffusion and 

convection parts separated with mention to their 

physical concepts. 

 

 

2.1 Rankin’s vortex time scales 
The equation of motion of the center of disk with 

mass M, in a uniform stream flow, Figure (1), with 

U∞  velocity and ρ  density is, 

( )M M Z i Qρ′+ = − Γ&&    (1)  

 

 
Fig.1, Spinning disk in an uniform flow 

 

Where M ′  is virtual mass and accounts for the 

inertia of the surrounding fluid having an equivalent 

mass, Z is complex plane, Γ  is the circulation 

around the disk and Q is relative velocity between 

background uniform stream flow and spinning disk, 

( )Q t U Z∞= − &    (2) 

The solution of (1) and (2), which is the trajectory of 

the center of the disk, is  
2 /i t TZ U t Ae cπ

∞= + +    (3) 

Where  

2 2

0

(0) / 2 ,

2 / 2 ( ) /( )

A iTQ

T a

π

π ω π ρ ρ ρ

=

= = + Γ
 (4) 

In the above a , 0ρ are radius of circulating disk and 

its density respectively, and c is a constant value. 

The second term in RHS of equation (3) represents 

the oscillatory part of trajectory relative to the mean 

trajectory defined byU t c∞ + . Hereω , T and A are 

the frequency, period and complex amplitude of the 

oscillations, respectively, figure (2). The mean 

trajectory in (3) shows that the disk drifts with the 

background velocityU∞ . The term A represents the 

diviation of the initial position from the mean 

trajectory and the amplitude of an oscillatory motion 

while the first term in equation (3) is a uniform 

motion. 

 

 
Fig.2, Trajectory of spinning disk in uniform flow 

 

     Figure (2) Shows the oscillatory and mean 

trajectory of a disk that starts with zero velocity 

from the origin, i.e., 0Z =0  and 0Z =0′ . At t=0, the 

Joukowski force is Uρ ∞Γ acting in the downward 

direction and the disk is gaining a downward 

velocity. This in turn induces a horizontal; 

component of the Joukowski force, increases x-

direction velocity from zero and thus reduces the 

horizontal component of relative velocity. The wave 

length, which is the horizontal distance traveled 

during one period, isU T∞ . The vertical shift 

/ 2U T π∞  of the mean trajectory given in equation 

(4) is equal to the average of the vertical 

displacement over one period. This completes the 

physical description of the oscillatory and mean 

trajectory of a spinning disk in a uniform stream.  

     Now consider the limiting case of “vanishing 

mass” or rather “vanishing radius” with 

finiteΓ ,U∞ . In order to setup the analogy for the 

motion of a Rankin vortex, let the density of the disk 

equal that of the fluid,  

0 1ρ ρ= =     (5) 

And with introduce the normal length and time 

scales: 
2/ , / /l U and l U U∞ ∞ ∞= Γ = Γ  (6) 

For the limiting case of “vanishing radios”, consider 

the radios “a ” to be the very small relative to “ l ”, 
i.e. 
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/ , 0 1a l U withε ε ε∞= = Γ < =  (7) 

In order to avoid the introduction of new symbols 

for dimensionless quantities, , /l l U∞ used as unit 

length and time with 1U∞ = and 1Γ = and thus 

render the quantities in (1) to (4) dimensionless. In 

particular z and t become the normal space and time 

variables. Also, noted,  
2 2 24 2 (0)T and A i Qπ ε π ε= =  (8) 

In the limit as 0aε = → , the period T, Amplitude 

A and the initial shift of the mean trajectory vanish 

as
2( )O ε . Consequently, in the normal time scale, 

the inertia of the disk (like as Rankin vortex 

similarly) is 
2( )O ε  and it appears to be moving 

with the velocity of the center of the disk (or vortex) 

fluctuates around U∞  by order (1)O . 

This means that the motion of a Rankin vortex in a 

flow field has two time scales at least. 

 

 

2.2 Expansion of N-S equation  
In an incompressible two-dimensional Newtonian 

fluid flow, the governing equations are the 

continuity and Navier Stokes. In terms of velocity, 

pressure gradient, the differential equations are, 

 
2 0U∇ =     (9) 

UP

UU
t

U

Dt

DU

2

)).((

∇+∇−=

∇+
∂
∂

=

µ

ρρ
  (10) 

In a Cartesian coordinate system. In two-

dimensional flow, vorticity as the curl of velocity 

vector will be a scalar,  

v u

x y
ω

∂ ∂
= −
∂ ∂

    (11) 

The vorticity transport equation will obtain by 

taking the curl of momentum equation (10) and 

using mass conservation (9) as following,  
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Base on introduced time scales, 

⇒= ),( τTtt    (13) 
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These two time scale shown schematically in figure 

(3). 

An expansion of two various order of viscosity 

introduced as, 
2

0 αν ν ε ν= +     (15) 

Where 0ν  is kinematic viscosity of fluid in flow 

while αν  is a property of flow that effect as a new 

viscosity term, but it different from properties of 

fluid. 

 
Fig.3, schematic of two time scales 

 

Substitution equations (13) and (15) in the (12) it 

yields, 

2 2 2 2

0
( . )U

T
α

ω ω
ε ω ν ω ε ν ω

τ
∂ ∂

+ + ∇ = ∇ + ∇
∂ ∂

 

      (16)

 Separation of various orders, lead to found follow 

equation, 

)1()( 0 OO =ε  

ωνω
ω 2).( ∇=∇+
∂
∂

U
T

   (17) 

And, 
2( )O ε  

2 ( )α

ω
ν ω

τ
∂

= ∇
∂

   (18) 

As it shown in above, equation (17) describes the 

vorticity field in normal time step, it is the time step 

in which convection phenomena appeared. In this 

time scale, diffusion related to kinematic viscosity 

of fluid and this equation is as similar as initial 

figure of vorticity transform equation but it has a 

different note, because it is confined to normal time 

scale and small time scale separated from the first 

configuration of initial form of vorticity transform 

equation. Equation (18) just shows a diffusion term 

in the small time scale base on different viscosity, 

which called flow or vortex viscosity. This viscosity 

term related to flow properties and describes the 

amount of new diffusion phenomena base on flow 

regimes. 

     Therefore, it is need, to solve below system of 

equations simultaneously, to finding vorticity field 

in a flow problem 
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3   Usage in Problem Solution  
In this part, proper usage of separated equations, and 

their simplifying will be described, and boundary 

conditions will be introduced. 

 

 

3.1 Flow Regimes Notifications  
Using equation (15), it is possible to write 

2

0 0T αν ν ν ν ε ν= + = +    (20) 

Where, Tν  is turbulence viscosity.  

     First let to focus on laminar flow, in this regime 

there is not vortex viscosity in the flow and the 

important viscosity related to fluid properties, 

therefore  
2

0 0T αν ν ν ε ν>> ⇒ >>   (21) 

And it is possible to ignore second equation, (18), 

and just use of solution of equation (17), to find the 

vorticity field of flow. Therefore equation (19) 

change to 

2( . )U
T

ω
ω ν ω

∂
+ ∇ = ∇

∂
   (22) 

This equation can be solved as usual vortex method, 

that equation (22) is solved in two fractional steps 

by implementing the two mechanisms of transport in 

each time step of the computations individually 

2

( . ) 0

( )

U
t

t

ω
ω

ω
ν ω

∂ + ∇ = ∂

∂ = ∇

 ∂

   (23) 

In the first fraction step, the transport of vorticity 

due to convection obtained from the solution of first 

expression in above equation, in terms of the 

Lagrangian displacement of a set of finite vortex 

elements. In the second step, the solution of the 

second expression simulated stochastically by the 

random walk displacement of the same vortex 

elements. The boundary conditions, satisfied by 

adding a potential velocity field in the convection 

step, and by creating extra vortex elements to satisfy 

the no-slip condition in the diffusion step. In the 

following boundary conditions described in more 

details. 

     In the turbulent flow vortex viscosity or viscosity 

that related to flow properties becomes more 

important, and its amount is higher than fluid 

viscosity, therefore 
2

0 0T αν ν ν ε ν<< ⇒ <<   (24) 

Hence, it is possible to neglecting fluid viscosity 

with compare to flow viscosity, and rewriting 

equation lead to 
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This is similar to RVM essential expressions, which 

used to finding vorticity field in problems.  

     It is important to note that this presentation of 

two separated equations, to finding vorticity field, is 

similar to RVM, but it essentially different, because 

in usual RVM, equation (12) separated with another 

view point, that describes, this operation is 

allowable because the time steps in solution process 

kept very small, although in present paper base on 

Rankin vortex model described that this separation 

is allowed because it is possible to use to different 

time scales, and specially two viscosity, instead of 

unique viscosity which used in a normal usage of 

RVM. 

 

 

3.2 Boundary Condition 
To solution of above equation, boundary conditions 

are needed. 

     For near wall location, base on no-slip condition 

it can be wrote, 

 

0=y  

2

0 0 0

( 0, 0)

U U U U

U U

α

α

ε= = ⇒ + =

⇒ = =
  (26) 

By taking the curl of momentum equation 

 
2

2( , )

w w

w

u u

y y

αω ω ω ε ω ω

ω ε ω ω

= ⇒ + =

⇒ = = −
 (27) 

 For locations far from the wall, boundary condition 

change to 

 
∞=y  

2

2( , 0)

U U U U U

U U U

α

α

ε

ε
∞ ∞

∞

= ⇒ + =

⇒ = =
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Therefore  
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2

0 0

( 0, 0)

αω ω ε ω

ω ε ω

= ⇒ + =

⇒ = =
 (29) 

It means that, no new vorticity add to flow, far from 

the wall without some things to change the shear 

stresses. 

 

 

4   Conclusion 
In present paper vorticity transport equation was 

separated to two parts base on two time scale of 

dynamic behavior of Rankin vortex model. The two 

main features of this work are: (i) usual usage of 

RVM is not valid for high Reynolds flows, because 

in turbulent regime time step, that related to 

fluctuations of flow, differ from normal time step, 

and the dominant viscosity is flow or vortex 

viscosity instead of fluid viscosity in the laminar 

flow, (ii) it is important to solve two separated 

equations of convection and diffusion 

simultaneously base on small time scale and flow 

(vortex) viscosity, may be found from another 

research work, for example base on Boussinesq 

theorem, and not with the fluid viscosity as usual in 

RVM, this work will be present in later publications, 

(iii) usage of usual RVM is acceptable for laminar 

flow with description of separation of convection 

and diffusion terms from initial equation, because in 

this regime there is one time step, that it is possible 

to separate two phenomena with small error in 

results, in this case the reason is very small time 

steps, that let to solve two equations of convection 

and diffusion separately and summarize their results 

after very small time step. 
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