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Abstract: - Random Vortex Method (RVM) is a powerful method to simulate viscous 

incompressible flow fields. In this study, RVM is extended and use was made of vortex 

filament model in order to solve flow field over a flat plate. Then, a new algorithm is 

proposed to investigate the effects of dynamical perturbation in laminar boundary layer 

theory. Contact layer method is used to model the diffusion mechanism. Contact layer model 

is based on satisfaction of shear stress in a layer near the wall in contrast with satisfying the 

zero-velocity on walls. The vortex filaments are discretized and each element perturbed by 

changing its angle and employing step function at the beginning of the plate. The stability of 

laminar boundary layer is investigated and the obtained results were in a good agreement with 

available results in Re= 310  and Re= 410 . 
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1   Introduction 
Vortex filament method is based on Kelvin and 

Helmholtz theorem which assumes the vorticity of 

vortex tubes are constant. Vortex filaments can 

move in inviscid incompressible flows. The three 

dimensional vortex theorem is first proposed by 

Leonard and he used it in 3D vortex 

elements[1,2].Chorin [3] used this method in a 

simpler way and the continuity of the vortex were 

preserved. Leonard [2] approximated the 

geometrical distribution of vortex filaments. Couet 

[4]was used 3D vortex filament and in his study ,he 

utilized second order approximation for integrals. 

Leonard [5] used 3D vortex filament method with 

homogeny core structure thin filaments, which is 

the benchmark of the following works. Knio and 

Ghoniem [6,7] used a “Thin tube “ method to study 

the stability of vortex rings. Leonard [5] shows that 

good results will be obtained if the radius of the 

vortex core increases monotonically and the 

volume of the vortex filament remain constant. 

Pothou [8] uses a vortex filament method to predict 

the acoustic field resulting from the impact of two 

vortex rings.The convergence of the vortex 

filament method is presented in Greengard [9].In 

this study, we used RVM with vortex filament 

model of finite length in order to study the flow 

field over a flat plate and its laminar boundary 

layer stability. 

 

2   Problem Definition 
The flow is assumed to be Newtonian viscous and 

incompressible one. The governing equations in 

two-dimensional coordinate are: 

0u∇ =g  (1) 
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3 Method of solution 
The vorticity transport equation will be obtained by 

applying curl operator over two sides of equation 

(2). 
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Equation (5) may be split into linear diffusion and 

nonlinear convection equations according to the 

fractional step of chorine [3] ,giving: 
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where ω  is vorticity vector. The idea of the 

fractional step method is to solve these equations 

sequentially rather simultaneously. The sequential 
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solution means that at each time step the diffusion 

equation is solved using the state of the flow at the 

end of the previous time step as the new initial 

condition. Then the convection part is solved using, 

as the initial condition, the solution of the diffusion 

equation for the current time step. Use was made of 

contact layer model to generate vorticity near the 

wall. In this region, diffusion terms are more 

efficient in comparison with convection terms. 

Also, v x∂ ∂  is much less than u y∂ ∂  and therefore 

the vorticity can be calculated as 

u yω ≈ −∂ ∂  (8) 

Assume that the vorticity has a continuous 

distribution near the wall with thickness of α  

(fig.15). According to Eq.(8), the vorticity has a 

asymptotic expansion in a contact layer, 

(9) 
2
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where ( )y O α=  and iω  is the different magnitude 

of vorticity in the contact layer. Therefore, Eq.(7) 

can be solved in two small time steps. In the first 

time step, the vorticity generates due to external 

body force and in the second time step, these vortex 

filaments of finite length diffuse into the flow field. 

Continous vorticity in 0 y α≤ ≤  discretized into N 

elements. So, the circulation for each element is 

(10) . ( 1,2,... )i i dA i NiωΓ = =  

Гi Can be divided in each time step into some 

vortex filaments of finite length. Number of vortex 

filaments is dependent on the vorticity in an 

element in contact layer. The vortex filament in 

each contact layer element should be distributed in 

a way that the velocity profile becomes linear 

(Fig.16).The generated vorticity moves to the field 

by Random walk. The diffusion equation of 

vorticity is: 
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where ν is the kinematic viscosity of the fluid. The 

Green function of one-dimensional form of Eq.(11) 

is: 
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In identical to the probability density function of 

Gaussian random variable η  with a zero mean and 

a standard deviation 2 tσ ν= : 
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The Green function of diffusion equation in two-

dimension is: 
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Random walk of vortex filaments of finite length in 

contact layer is the same as their random walk in 

the flow field. Convection terms can be neglected 

in contact layer. If 
i

y <α , the vortex filament 

remains in contact layer and will be eliminated and 

in the next step will be regenerated in a new 

position depending on new conditions. If 
i

y >α , 

the vortex filament moves toward the flow field. 

Therefore, the total displacement can be written as: 

(15) ( ) ( ) ( ) .j j jk j

k

t t t t+ ∆ = + ∆ +∑x x U x η  

where ( , )
j xj yj
=η η η  is a 2D Gaussian number and 

( )jkU x  is the velocity field due to potential 

background flow and vortex effects. α , in contact 

layer model, should be chosen enough small to 

have a linear velocity profile. Considering 

2 tσ ν= ∆ , if α is assumed to be equal to σ  then 

t∆  can be calculated ,and the other parameters will 

be specified. 

The induced velocity of the infinite length vortex 

filament at the middle of it according to Biot-Savart 

law is 2 rπΓ . Which is the same as the velocity 

induction of a point vortex. Therefore in the first 

time step, the middle section of vortex filament is 

considered. The gravity center of vortex filament is 

also considered in convection and diffusion 

mechanisms, in which in the second time step two 

random number η1, η2 is employed for the gravity 

center of vortex filament. Random vortex method 

with vortex filament of finite length is a time-

consuming algorithm, so we change its parameters 

in order to increase it efficiency. We choose the 

length of vortex filaments 0.9 and the very good 

results obtained. 

3.1   Discretization of vortex filament 

The calculation of distribution of vorticity in flow 

field needs a big memory and also a time-

consuming job. Chorin [3] in his study of analysis 

of vortex method and its instabilities shows that 

each vortex element moves in the field under the 

induced velocity of other vortex element. In this 

study, each vortex filament of finite length 

discretized to some elements for example a vortex 

filament of 0.9 length is divided to 9 elements and  

also vorticity generates in the middle section, 

z=0.45. As in Fig 17, each element is described by 

the position of its both ends. Moreover, the strength 

of each vortex filament remains constant along its 

length. 

 

3.2   Introducing perturbation on vortex 

elements 
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Two random angles are added to each element 

along x-axis and y-axis. Therefore each element 

has four random number, two random number for 

the position of gravity center and two for its 

rotation along x and y axes. Thus the flow field 

stability can be studied by considering perturbed θ  

along x-axis and φ  along y-axis. 

(16) 

1 *
2

π
θ η=  

(17) 

2 *
2

π
φ η=  

(18) 0ψ =  

Where ψ  is the angle along z-axis and 1 2,η η  are 

two random numbers of normal distribution. A step 

function is applied at the beginning of the plate. 

4   Results and Conclusion 
In this study, extended random vortex method with 

vortex filament of finite length along with contact 

layer model is used to investigate the flow field of 

an incompressible fluid over a flat plate and also 

the effects of dynamical excitation in laminar 

boundary layer is studied. 250 panels with 

thickness of α  are considered in the middle 

section of vortex filament of finite length in contact 

layer model. The parameters of random vortex 

method are listed in table 1, where 
max

Γ  is the 

maximum circulation of each vortex filament.[10] 

The turbulence intensity is assumed to be less than 

0.2%.δ  is the radius of vortex core of finite length. 

The velocity profile is calculated for 4 points of the 

length of the flat plate and the obtained results are 

in Fig(1-4) in comparison with Blasius analytical 

results. Because of extensive calculation works 

when the length of the filament is 1000, we revised 

the algorithm of vortex omission to obtain the 

optimum length of the filament. Finally, we arrive 

at the length of 0.9 and omission of the vortexes 

over x=10. Two fluids with different viscosities are 

chosen and the kinematic viscosities are assumed to 

be 
310−
 and 

410−
. The length of the plate is 1 and 

also the mean flow velocity is assumed to be 1. 

The response amplitude of step function with 

respect to the frequency for two fluids is shown in 

Figs. 5 and 6. Two points are considered in 

y=0.004 over plate and the velocity fluctuations are 

illustrated in Figs. 7-10. Figures 11-14 show the 

frequency amplitude fluctuations of velocity. The 

Re number is less than critical Re number, so as 

predicted before and according to the marginal 

stability curve [12], the amplitude of fluctuation is 

decreased and the flow field remains laminar. 
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Table 1. Parameters in Random Vortex Method (RVM) 

Computational 

Parameter 
Re 1000L =  Re 10000L =  

( )2

max ecm SΓ  -57.59 10×  -57.59 10×  

)(mα  -32 10×  -45 10×  

( )mσ  -32 10×  -45 10×  

( )mδ  -32 10×  -45 10×  

( )t Sec∆  -32 10×  -31.25 10×  

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Numerical Solution

Blasius Solution

u/u∞

η

kinematik viscosity=10

Re   =600x

-3

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Numerical Solution

Blasius Solution

η

u/u∞

kinematik viscosity=10

Re   =200
x

 

Fig2. Velocity profile for 3 310 m sυ −=  at 

x=0.4 

Fig1. Velocity profile for 3 310 m sυ −=  at 

x=0.2 
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Fig4. Velocity profile for 3 310 m sυ −=  at 

x=0.8 

Fig3. Velocity profile for 3 310 m sυ −=  at 

x=0.6 
 

  

Fig6. Frequency amplitude of step function  

over frequencies, 4 310 m sυ −=  

Fig5. Frequency amplitude of step function 

over frequencies, 3 310 m sυ −=  

 

Kinemaic visco: .0001 
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Fig8. Velocity fluctuation for 
3 310 m sυ −= , x=0.8 

Fig7. Velocity fluctuation for 
3 310 m sυ −= , x=0.4 

  

Fig10. Velocity fluctuation for 
4 310 m sυ −= , x=0.8 

Fig9. Velocity fluctuation for 
4 310 m sυ −= , x=0.4 

  

Fig12. Frequency amplitude over 

fluctuation frequency for 3 310 m sυ −= , 

x=0.8 

Fig11. Frequency amplitude over 

fluctuation frequency for 3 310 m sυ −= , 

x=0.4 

  

Fig14. Frequency amplitude over 

fluctuation frequency for 4 310 m sυ −= , 

x=0.8 

Fig13. Frequency amplitude over 

fluctuation frequency for 4 310 m sυ −= , 

x=0.4 
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Fig15. Contact layer element 
Fig16. Velocity profile in contact layer 

element 
 

 
Fig17. schematic of vortex element 
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