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Abstract: - In this work an alternative proof of the Onsager Reciprocal Relations (ORR) for simultaneous heat & 

mass transfer in the presence of external forces is given. This proof is based on the transformation laws between 

fluxes defined relative to an arbitrary velocity (Galilean Invariance) thus eliminating any doubt about the ORR. It 

is believed that this proof may be generalized to other processes beyond multi-component diffusion and heat 

transfer thus leading to a generalized framework for transport phenomena and irreversible thermodynamics. 
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1.   Introduction 
The field of irreversible thermodynamics provides 

us with a general framework for the macroscopic 

description of processes. It can be viewed as a 

branch of microscopic physics with applications to 

fluid mechanics, electromagnetic theory etc.  

Irreversible thermodynamics is based on four 

postulates above and beyond those of equilibrium 

thermodynamics [1]-[3]: 

1. The equilibrium thermodynamic relations apply 

to systems that are not in equilibrium, provided that 

the gradients are not too large (quasi-equilibrium 

postulate) 

2. All the fluxes (ji) in the system may be written as 

linear relations involving all the thermodynamic 

forces, Xi. (linearity postulate, ∑
=

=
n

1k
iiki Xj ΩΩΩΩ   ;   i 

=1,2…n) 

3. No coupling of fluxes and forces occurs if the 

difference in tensorial order of the flux and force is 

an odd number (Curie´s postulate) 

4. In the absence of magnetic fields and assuming 

linearly independent fluxes or thermodynamic 

forces the matrix of coefficients in the flux-force 

relations is symmetric. This postulate is known as 

the Onsanger´s Reciprocal Relations (ORR): 

 Ωik= Ωki. Onsager derived these relations for the 

first time in 1931 [4]-[5]. He used the principle of 

microscopic reversibility by applying the invariance 

of the equations of motion for the atoms and 

molecules with respect to time reversal (the 

transformation t→-t). This means that the 

mechanical equations of motion (classical as well as 

quantum mechanical) of the particles are symmetric 

with respect to the time. In other words, the 

particles retrace their former paths if all velocities 

are reversed. Onsager also made a principal 

decision: the transition from molecular reversibility 

to microscopic reversibility can be made. It is 

important to remark that Onsager did not use a 

particular molecular model. As a consequence the 

results and limitations of the theory are valid for all 

materials, so that the theory can be related to 

continuum theory [6]. Casimir developed further 

this theory [7]. 

In the literature, there appear to be two groups of` 

derivations of Onsager reciprocal relations. In the 

first of these, it is assumed that the macroscopic 

laws of motion hold for the averages of the 

macroscopic coordinates (such as temperature 

gradient, concentration gradient, etc) even if their 

values are microscopic. The second group assumes 

a definite statistical law for the path representing the 

system in phase space [8]. 

Although there is experimental evidence for the 

validity of ORR [9]-[11], doubts about this 

postulate have been raised in the literature[12]-[14]; 

For example, In Rational Thermodynamics [13] 

Truesdell remarks, “Onsager’s and Casimir’s claims 

that their assertions follow from the principle of 
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microscopic reversibility have been accepted with 

little question… the reversibility theorem and 

Poincare´s recurrence theorem make irreversible 

behavior impossible for dynamical systems in a 

classical sense. Something must be added to the 

dynamics of conservative systems, something not 

consistent with it, in order to get irreversibility at 

all.” [14] Moreover, it is believed that if equilibrium 

relations such as the Gibbs-Duhem equations are 

added in the mathematical model for multi-

component diffusion by simply applying the quasi 

equilibrium postulate, then the ORR are not 

necessarily fulfilled; (ref 2, p. 67-69). Therefore the 

theoretical basis of ORR requires careful 

considerations as was also noticed by Prigogine and 

Kondepudi [15] in a recent review. In our previous 

work [16] a simple proof for the isothermal multi-

component diffusion case was given. This proof 

was based on the transformation laws between 

fluxes defined relative to an arbitrary velocity 

(Galilean Invariance) The aim of this work is to 

investigate the theoretical basis of this principle by 

extending the previously described  methodology to 

the simultaneous heat transfer and mass transfer 

which is important in many industrial processes [3], 

[17]-[26].  

 

2. Derivation of the Onsager 

Reciprocal Relations  
The uncompensated heat produced by an 

irreversible process is given by the dissipation 

function. The dissipation function is derived from 

an entropy balance [1]-[3]. The starting point of this 

work is the definition of the dissipation function Ψ 

in the absence of viscous flows for a non-elastic, 

non-reacting, isotropic fluid containing n diffusing 

species [28]-[29]:   

u
´
q

n

1i

´
ii xjxjT +== ∑

=

≠σσσσΨΨΨΨ  ; T/gradTxu −=  ; 

∑
=

−=
n

1i
iiq

´
q jHjj  ; 

dt

dq
j. q ρρρρ=∇−  ; i =1,2..n 

      (1) 

where σ is the rate of production of entropy per unit 

volume,  T stands for the thermodynamic 

temperature, Hi is the partial molar of species i, q 

represents heat, ρ is the density. The molar flux 

≠
ij is measured relative to an arbitrary velocity υ≠≠≠≠ : 

)(cj iii
≠≠ −= υυυυυυυυ  ; ∑

=

≠ =
n

1i
iiw υυυυυυυυ  ; ∑

=
=

n

1i
i 1w ; 

∑
=

=
n

1i
iicMρρρρ      (2) 

ci is the molar concentration, Mi stands for the 

molar mass of the i-th species. Please note, that the 

fluxes ji
  
are also linearly dependent, since from eq 

(2): 0c/jw i
1i

ii =∑
=

≠
      (3)   

The thermodynamic forces x´i are given as [27]-

[29]: 

)p(gradVF)grad(x i
´
iP,Ti

´
i −+−= µµµµ

ρρρρ













−+= ∑

=

n

1j
jjii

´
i Fc)p(gradMFF   (4) 

gradµi  is the gradient of i-th substance molar 

chemical potential, Vi stands for the partial molar 

volume of the i-th substance, p is the hydrostatic 

pressure and Fi represents the external force per 

mole of each substance. In this work, it is assumed 

that external forces act on the system or in other 

words there is no mechanical equilibrium. By 

using Eq (3) the dissipation function (Eq. 1) is 

written as: 

u
´
q

1n

j,i

´
jiij xjxjA += ∑

−
≠ΨΨΨΨ  

nijiijij wc/cwA += δδδδ   ; i,j = 1,2..,n-1            (5) 

Eq (5) can be regarded as the sum of fluxes and 

transformed dynamic forces: 

u
´
q

´
j

1n

1j

1n

1i
iij

u
´
q

1n

1i

1n

1j

´
jiji

xjxjA

xjxAj

+







=

=+













=

∑ ∑

∑ ∑

−

=

−

=

≠

−

=

−

=

≠ΨΨΨΨ

   (6) 

The main idea of irreversible thermodynamics is to 

derive from the dissipation function fundamental 

macroscopic laws [1]-[3]; For this purpose the 

linearity postulate (see Introduction) is applied to 

the fluxes and driving forces as these appear in the 

dissipation function. In our case there are n-1 

independent fluxes and driving forces [16]. 

Consequently, by using the linearity postulate (see 

Introduction) the following equations between 
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fluxes and thermodynamic driving forces are 

derived: 

( ) uiu

1n

1k,j

´
kjkiji xlxAlj ≠

−

=

≠≠ += ∑    

( ) uuu

1n

1k,j

´
kjkujq xlxAlj

≠
−

=

≠≠ += ∑   

( ) uiu

1n

1k,j
kkjij

´
i xrjArx ≠

−

=

≠≠ += ∑       

( ) uuu

1n

1k,j
kkjuju xrjArx ≠

−

=

≠≠ += ∑   (7) 

The quantities l
≠
 are the conductivity coefficients 

and r
≠
 are the resistance coefficients for diffusion or 

heat transfer, respectively. Since the fluxes and the 

thermodynamic forces are linear independent (Eq. 

7), the Onsager reciprocal relations (ORR) state that  

≠≠ = jiij ll  , 
≠≠ = juuj ll  or  

≠≠ = jiij rr  , 
≠≠ = juuj rr  i,j  =1,2…n-1            (8) 

The starting point of this analysis is the introduction 

of the resistance coefficients (R
≠
) by using the 

linearity postulate [2], [28]-[30]: 

qiu

n

1j
jij

´
i jRjRx

≠

=

≠≠ += ∑

quu

n

1j
juju jRjRx ≠

=

≠≠ ++= ∑  ; i = 1,2….n (9) 

In the above equations it is assumed that the 

resistance coefficients are different than these 

defined in Eq (7). By using Eq. (3) and eliminating 

j
≠
n from Eq. (9), the following equation is derived: 

( ) qiu

1n

1j
jnjinnjij

´
i jRjwc/RcwRx ≠

−

=

≠≠≠ +−= ∑

( ) quu

1n

1j
jnjunnjuju jRjwc/RcwRx ≠

−

=

≠≠≠ +−= ∑

   i=1,2..n             (10) 

But from the Gibbs-Duhem theorem the following 

equation holds[16]: 0xc
n

1i

´
ii =∑

=
                (11) 

From Eq. (5b), (7) and (11) it follows that 

( )

n

1n

1i
iui

n

1j,i
nj

1n

1k
ikknjjiji

´
n

c/rc

c/jrcwc/wrcx

∑

∑ ∑

−

=

≠

=

≠
−

=

≠≠

+









+−=

                (12) 

Comparison of Eq. (7) and (12) with Eq. (10) gives:  

( )∑
−

=

≠≠≠≠ +=−
1n

1k
ikknjjijnjinnjij rcwc/wrwc/RcwR

≠≠ = iuiu rR  i,j = 1,2..n-1                   (13) 

( )∑ ∑
−

=

≠
−

=

≠≠

≠≠









+−=

=−

1n

1i
nj

1n

1k
ikknjjiji

njnnnjnj

c/jrcwc/wrc

wc/RcwR

 

                (14) 

 0Rcrc nun

1n

1i
iui =+ ≠

−

=

≠∑  or by using (13b) 

0Rc
n

1i
iui =∑

=

≠
                (15)  

( )∑
−

=

≠≠≠≠ +=−
1n

1k
ukknjjujnjunnjuj rcwc/wrwc/RcwR

≠≠ = uuuu rR                (16) 

By substituting  Eq. (9) into Eq. (11)  the following 

equation is derived [31]:  

∑ ∑∑
=

≠

==

≠≠ =+
n

1i
qiu

n

1i
i

n

1j
jiji 0jRcjRc    

From this equation and by taking into account that 

the total sum of molar fluxes relative to an arbitrary 

velocity, in the most general case, is not equal to 

zero it follows that  ∑
=

≠ =
n

1i
iji 0Rc                       (17)      

By introducing Eq. (17) into Eq. (14) it follows that 

( ) 0c/rccRwc/w

rccR

1n

1j

2
nijjinnnjj

1n

1i

1n

1i
ijiiij

=













−−









−

∑

∑ ∑

−

=

≠≠

−

=

−

=

≠≠

  

 j = 1,2..n-1               (18) 

As Eq. (18) holds for arbitrary concentrations, one 

could derive the following equations: 
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∑∑
−

=

≠
−

=

≠ =
1n

1i
iji

1n

1i
iji rcRc  ; j=  1,2 .. n-1 

∑
−

=

≠≠ −=
1n

1j

2
nijjinn c/rccR              (19) 

From the above equation it follows that:  

≠≠ = ijij rR  ; i,j = 1,2…n-1                                    (20) 

By using Eq. (20) one can eliminate the first term of 

the left and the right hand-side of  Eq (13) and the 

following equation is directly derived: 

∑
−

=

≠≠ −=
1n

1j
nijjin c/rcR  ; i = 1,2…n-1  or       

∑
=

≠ =
n

1j
ijj 0Rc                (21) 

By using Eq. (17)-(21) it follows that 

∑∑
=

≠

=

≠ ==
n

1j
jij

n

1j
ijj 0RcRc ; i, j = 1,2 …n or 

≠≠ = jiij RR  ; i, j = 1,2 …n             (22) 

These are the Osanger reciprocal relations for the 

diffusion resistance coefficients.  

At this point one has to resort to the Galilean 

invariance for the heat transfer resistance 

coefficients. The Galilean transformation describes 

the change from one reference system into another 

by means of a uniform translation. In the classical 

theory, the physical laws and equations have to be 

invariant with respect to reference systems that are 

in relative translation at constant velocity.[6] In our 

case, the fluxes or the driving forces defined in Eq. 

(7) and in Eq. (19)-(20) could be viewed as 

quantities defined with respect to different reference 

systems. According to Galilean transformation the 

physical laws and equations have to be invariant 

regarding the different system of reference. The 

resistance coefficients are physical quantities 

characterizing matter; Consequently, they are 

independent of the fluxes reference system and the 

following equation holds true: 
≠≠ = ujuj rR . By 

substituting this equation into Eq. 16 and by taking 

into account Eq.(13b) and 15 it follows that 

0RcRc
n

1i
uii

n

1i
iui == ∑∑

=

≠

=

≠
 or 

≠≠ = juuj RR . Given 

this equality, by taking into account Eq. (13b) the 

Onsager reciprocal relations for the 
≠
ujr  are derived: 

≠≠ = juuj rr  ; 
≠≠ = juuj ll  ;j =1,2…n-1.  It should 

be noted here that this work follows closely the 

work of Lorimer [27]-[28]. However, in this work 

the equality 
≠≠ = ujuj rR   is derived as a consequence 

of the Galilean transformation and the equality 

≠≠ = ijij rR  (Eq. 20) is derived from the Gibbs-

Duhem theorem.                     

 

 

3.   Results & Conclusions 
In the present work an alternative proof of the 

Onsager reciprocal relations (ORR) for 

simultaneous heat & mass transfer in the presence 

of external forces (absence of mechanical 

equilibrium) is given. This proof is based on the 

transformation laws between fluxes defined relative 

to an arbitrary velocity (Galilean Invariance, GI) 

eliminating thus any doubt about the ORR for the 

multi-component diffusion case. Moreover, it is 

shown that that if the Gibbs-Duhem equations are 

added in the mathematical model for the multi-

component diffusion by simply applying the quasi 

equilibrium postulate, the ORR are also fulfilled.  

 It is also shown that every model for simultaneous 

heat & mass transfer should satisfy the Onsager 

reciprocal relations. It is believed that this proof 

may be generalized to other processes beyond  

simultaneous & heat mass transfer thus leading to a 

generalized framework for irreversible 

thermodynamics and transport phenomena.  
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