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Abstract: - The unsteady boundary layer due to small amplitude sinusoidal oscillation of a plate in viscous 

incompressible fluid is investigated here using Random Vortex Method. While the plate oscillates in its own 

plane. The unsteady boundary layer causes the unsteady velocity profile and shear waves propagation. The 

numerical result is compared with analytical solution for the case that the oscillation amplitude is small 

enough to neglect nonlinear convectional term. The results of RVM for unsteady boundary layer show good 

similarity confirming the ability of the proposed method. The nonlinear convectional term can also be taken in 

to account in RVM, in the cases that they can not be neglected. 
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1   Introduction 
The motion of viscous fluid caused by sinusoidal 

oscillation of a flat plate is termed as stocks second 

problem by schlichting [1]. It is not only of 

fundamental theoretical interest but it also occurs in 

many applied problems; Such as acoustic streaming 

around oscillating body [2]. As early as 2000, M. 

Emin Erdogan has considered the flow of an 

incompressible viscous fluid caused by the small 

amplitude oscillation of the plane wall [3, 7]. 

This motion will produce, far from the body, 

acoustic wave of small amplitude. the flow near the 

body will, in general, have normal and tangential 

velocity component relative to the body. On the 

body’s surface the normal velocity component is 

fixed by the requirement that there be no flow 

through the boundary. And also when the viscosity 

effects are taken into account the fluid in contact 

with the body can no longer slip over the body; 

Instead, it adheres to it. This is not the only effect of 

viscosity, for in the same way that is precludes slip 

between fluid and solid, it also prevents complete 

slippage between contiguous layers of fluid. 

Therefore, no slip condition at a boundary will make 

the whole tangential velocity profile significantly 

different from which would exist if the fluid were 

inviscid.  

The propagation of shear waves and unsteady 

boundary layer are analyzed here via Random 

Vortex Method, In RVM, the Navier–Stokes 

equations, in the form of vorticity, is split into 

diffusion and convection parts, according to the 

fractional step method. A random Walk method is 

used to solve the diffusion equation. So unlike the 

analytical method using RVM, the nonlinear 

convectional term is also taken into account.  

 

 

2   Problem Formulation 
To study the motion of infinite plate a rectangular 

system of coordinate is attached to the plate is such 

a manner that the plane wall is chosen as x-axis and 

it oscillates in its own plane, as sketched in fig. 

1.because of viscosity the fluid above the plane is 

also move, but it is clear that the fluid velocity will 

have only one component, and this will be parallel 

to the velocity of the plane. Further, this velocity 

component can not depend on distance along the 

plane so that ( ), ,0,0u y t=   u . Therefore . 0∇ =u , so 

the momentum equation yields: 
2

0 2
( . )

t y
ν

∂ ∂
+ ∇ =

∂ ∂
u u

u u  (1) 

 

  

2.1 Analytical solution [8] 
When the fluid is initially at rest and oscillation 

amplitude is small, the nonlinear term is assumed to 

be in small order. Neglecting the convection term, 

linear form of equation is obtained:  
2

0 2t y
ν

∂ ∂
=

∂ ∂
u u

 (2) 
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This is a diffusion equation. Therefore if the fluid 

starts at 0t = and imparts some momentum to the 

fluid in contact with it, would expect this 

momentum to be diffused slowly into the fluid. The 

motions of fluid after all transient effects have 

disappeared; since the plane is oscillating as: 

0
Re( )i t

P
U U e ω−= %  (3) 

 The fluid velocity is also expected to depend 

harmonically on time. Therefore: 

( , ) Re ( )
i t

u y t U y e
ω− =  

%  (5) 

So it yields: 
2( ) ( ) 0U y K U y′′ + =% %  (6) 

0

 (1 )
 2

K i ω
ν= + %  (7) 

The solution is: 

( )(1 ) (1 )
( , )

i i y i i yi tu y t e Ae Beν νδ δω + − +−= +%  (8) 

where: 

0
2

ν

νδ ω=
%
 (9) 

Since for y→∞  the velocity must be small, we 

must set 0B = . Also at 0y =  the fluid velocity is 

equal to that of the plane, so that 
0

A U= and: 

( )

0
( , ) cos

y
y

u y t U e tνδ

ν

ω δ
−  = − 

 
%  (10) 

The fluid therefore, also oscillates harmonically in 

time, but the oscillation lag those of the plane, and 

has very small amplitude far from the plane. fig. 3 

depicts relative-velocity profiles at various times 

during one oscillation. In the figure time is measured 

from the point during a cycle when 
0

u U= at 0y = . 

It is seen that for 
4

t
π

ω ≤%   the maximum fluid 

velocity amplitude is at the plane 0y = . However, 

for 0y >  in fact its location in the fluid is given by: 

max
( )

4
y t t ν

π
ω δ = − 
 
%  (11) 

Thus one if the feature of the oscillation, namely, the 

point of maximum fluid velocity is seen to be 

moving into the fluid with velocity 02νωδ ων=% % . 

 

 

2.2 The Numerical method 
Equation (1) can be written in the form of vorticity: 

2

0 2
( . )u

t y

ω ω
ω ν

∂ ∂
+ ∇ =

∂ ∂
 (12) 

This equation called vorticity transport equation and 

may be split into linear diffusion and nonlinear 

convection equations according to the fractional step 

method of Chorin [9,13], giving. 

2

0 2t y

ω ω
ν

∂ ∂
=

∂ ∂
 (13) 

( . )u
t

ω
ω

∂
= − ∇

∂
 (14) 

where ω  is vorticity vector. The idea of the 

fractional step method is to solve these equations 

sequentially rather than simultaneously. The 

sequential solution means that at each time step the 

diffusion equation is solved using the state of the 

flow at the end of the previous time step as the new 

initial condition. Then the convection part is solved 

using, as the initial conditions, the solution of the 

diffusion equation for the current time step. By 

taking the convective term into account the 

nonlinear problems with large amplitude oscillation 

can also be solved. 

The transport of vorticity due to diffusion in random 

vortex method is implemented by dispersion of a 

finite number of vortex elements with finite and 

constant vorticity according to a 2-dimensional 

Gaussian statistics. This based on the fact that the 

green functions of 1-dimentional form of equation 

(13) is: [14] 

2Re( , )  exp
4 4

R
G y t y

t tπ
 = − 
 

 (15) 

In identical to the probability density function of 

Gaussian random variable 
η
 with a zero mean and a 

standard deviationσ : 

2

2 2

11( , )  exp
2 2

P tη ηπσ σ
 = − 
 

 (16) 

If 
2

Re

t
σ =  The green function of diffusion equation 

in 2-dimension is: 

2 2Re( , , )  exp ( )
4 4

R
G x y t x y

t tπ
 = − + 
 

 (17) 

which is equivalent to: 

( , , ) ( , ) ( , )G x y t G x t G y t=  (18) 

where ( , )G x t  and ( , )G y t  have the same form as in 

equation (15).then the corresponding probability 

density function is the product of two 1-dimensional 

probability density functions: 

1 2 1 1 2 2
( , , ) ( , ) ( , )P t P t P tη η η η=  (19) 

So the solution of equation (13) is simulated 

stochastically by a 2-dimensional displacement of 

vortex elements in two perpendicular directions 

using two sets of independent Gaussian random 

numbers, each have a zero mean and standard 

deviation of 
2

Re

Dt
σ = . 

To construct an algorithm the vorticity in the flow is 

represented by a number of discrete vortices, which 

are given a random Gaussian motion, or random 
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walk with zero mean and variance of 
2

Re

Dt
 where 

Dt is the time step. These vortices are generated on 

the surface to satisfy the no–slip boundary 

condition. Such that the surface of the body is 

represented by m  panels. Each of which is allocated 

a vortex distribution of 
i

Γ  per unit length, This 

vortex distribution is then discretized into a number 

of point vortices, such that the circulation of each 

vortex being less than some prescribed 

maximum
max

Γ and the distribution Is such that made 

linear velocity profile on the panels with respect to 
y
 and zero resultant tangential Velocity at the 

central collocation point. The panels’ height is 

chosen small enough to place under the laminar sub-

layer so their linear velocity profile role as a 

boundary condition and force the velocity profile to 

be linear near the body.  

The convection term is then taken into account with 

moving the vortices with their inviscid velocities in 

the Lagrangian scheme. So the new position of the 

vortices due to the convection and diffusion is given 

by: 
t t t t

i i i ix

t t t t

i i i iy

x x u Dt

y y v Dt

η

η

+∆

+∆

= + +

= + +
 (20) 

where ( , )
i i

t t
x y   and ( , )

i i

t t
u v  represented the position 

and velocity vector of 'i th vortex at time t , and 

( , )
ix iy

η η is Gaussian random translation vector. The 

vortices velocity ( , )
i i

t t
u v  is calculated using potential 

velocity around desired geometry and velocity 

induced by other vortices. 

 

 

3   Conclusion 
The problem under consideration is a sinusoidal in 

plane oscillation of infinite plate with velocity 

amplitude 
0

0.001U =  and oscillation 

frequency 10ω π= , the considered fluid is water 

with 0.000894µ =  and 1000ρ = . The plate 

oscillation is considered in two cases: 

The RVM and analytical results are compared for 

small amplitude wall oscillation in stationary fluid, 

so as assumed in analytical solution the convection 

term is small enough to be neglected; Comparisons 

between analytical and numerical result for this case 

in fig. 4, fig. 5 and fig. 7 show the capability of 

RVM for unsteady boundary layer consideration,. 
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fig. 1 schematic of in plane oscillation of half plane wall (stocks second problem) 

fig. 2  
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fig. 3 nondimensional-velocity profiles at various times during one oscillation 
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fig. 4 Analytical and Numerical results of velocity profile in 2tω π=   
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fig. 5 Analytical and Numerical results of velocity profile in 5
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fig. 7 Analytical and Numerical results of velocity profile in 7
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