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Abstract: - Flow over flat plate was investigated using combination of random vortex and 
boundary element methods. Use was made of Helmholtz principle in order to decompose the 
flow field into potential and rotational parts. Boundary Element Method (BEM) was used to 
solve Laplace equation for potential flow field in which the boundaries discritize to some 
elements. Contact layer model was utilized to generate vorticity over boundaries in order to 
compute the effects of rotational field. Generated vortexes simulate the rotational field via 
convection and diffusion. Comparison was made in two cases, Re=1000, Re=10000, and the 
obtained results confirms the applicability of the proposed method. 
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1 Introduction 
Using random vortex method (RVM) has some 
advantages for solving a flow field because pressure 
terms are omitted in the vorticity transport equations 
and the continuity equation is satisfied inherently. 
This method was first proposed by Chorin [1] for 
high-Reynolds flow. 
The effect of parameters such as the strength of the 
vortexes and the number of vortexes over the rate of 
convergence in laminar flow were studied by 
Ghoniem and Cagnon [2]. Their study shows that 
the rate of convergence is a function of the number 
and strength of vortexes in the field. The precision 
of the obtained results was investigated by Henri 
Cottet [3]. Marshall and Grant [4] construct a 
diffusion velocity method for axisymmetric flows. 
Milane [5] uses a diffusion velocity method to 
compute LES solutions in a 2D mixing layer. 
M. Gallati and G. Braschi [6] used random vortex to 
analysis flow past a cylinder.  
In the above mentioned works, sheet vortex 
generation was utilized as a model of vortex 
generation satisfying no-slip condition on walls. 
Superposition of Basic flows and image methods 
were used to study normal boundary condition in 
rotational part of the flow field solution. 
Clarke and Tutty [7] used 2-D boundary element 
method with 2-D elements for potential field and 
random vortex method for rotational field of the 
whole flow field. Marshall and Grant [8] used a 
combination of source and vortex panels for 

studying a blade in a vortex core. In recent works, 
potential field will be obtained by applying the 
integral form of the Laplace equation Ploumhans [9] 
and Khatir [10]. Elliptical boundary integral was 
investigated by Beal [11] by calculating the strength 
of a double layer potential over boundaries. 
Combination of RVM and BEM was used by 
Gharakhani and Ghoniem [12] to study internal 
flows. In this study, we used BEM and RVM with 
contact layer model to investigate the flow field over 
a flat plate. Boundary layer thickness, shear stress 
and velocity profiles were calculated. Finally, the 
analytical result compared with the obtained results  
which confirms the applicability of the proposed 
method. 
 

2 Problem Formulation 
We considered an unsteady 2-D flow field over a 
flat plate with zero-angle of attack. The fluid was 
assumed to be Newtonian, viscous and 
incompressible. The governing equations are as 
follows, 

0u∇ =i (1) 

( ) 21.
Re

P
t

∂ + ∇ = −∇ + ∇ +
∂
U U U U f (2) 

0 on the walls=U (3) 
( , ) (1,0)   u v far from the walls= =U (4) 
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3 BEM and RVM combination 
Considering Helmholtz principle, one can 
decompose a field as a summation of a curl-free and 
a divergence-free parts. 

u Aϕ=∇ +∇× (5) 
Applying divergence operator in both sides of Eq. 
(5) and considering the incompressibility 
relation ( )0u∇ =i , Laplace equation can be 
obtained for the scalar potential field. The boundary 
conditions are as follows, 

ˆ. 0n
n
φφ ∂

∇ = =
∂

(6) 

Uφ ∞∞
∇ = (7) 

The potential field was calculated by boundary 
element method using boundary integral equation. 
 
3.1   Potential field via BEM 
The basic of the BEM is derived from the Green’s 
identity over the boundaries of a body [14]. 

2

V V Vp

w ff w dv f dS w dS
∂ ∂

∂ ∂
∇ + =

∂ ∂∫ ∫ ∫n n
 (8) 

2 0f∇ = and 2 ( , )w δ ξ η∇ = are the basic 
equations in which ( , )p ξ η= is a singularity. 
Equation (8) can be rewritten as follows, 

p p
w fc f f dS w dS

Γ Γ

∂ ∂+ =
∂ ∂∫ ∫n n  (9) 

where the value of pc depends on the location of 
( , )p ξ η= .(inside or outside of the integral 

boundary) 

1 p D
1 p AND    smooth at p
2
internal angle p AND    not smooth at p

2

pc

π


 ∈
= ∈Γ Γ

 ∈Γ Γ

(10)

In this method, the boundaries are discretized, so the 
integrals of equations (8) and (9) can be evaluated 

numerically. The values of f∂
∂n

in each elements are 

specific, thus the equation will be just a function of 
values of f over the boundaries. 
Therefore, by substituting the basic solution of the 
singular point in each boundary node and calculating 
the integrals, we arrive at a system of algebraic 
equations. 
The solution of the system will be the value of f in 
each node. For calculating f in each point of the 
field, the singularity is located in that point and then 
the integrals will be calculated over the boundaries. 
Following this procedure, the potential field of the 

flow field will be obtained. This part of the solution 
is used as a background flow in each iteration in 

RVM. The value of f∂
∂n

in each node can be 

calculated via the induced velocity of the vortexes 
and will be the boundary condition in the next step 
for the potential field. 
 

3.2   Rotational field via RVM with contact layer  
The vorticity transport equation is, 

21( . )
Ret

ω ω ω∂ + ∇ = ∇ +∇×
∂

U f
(11) 

where ( . )U ω∇
�

and 2(1/ Re) ω∇ are the convection 
and diffusion of vorticity terms, respectively. f∇×
is the source term where f

�
is the body force which 

play the role of generation of vorticities in a contact 
layer element [13,15]. If the time step is considered 
to be enough small, the process of transportation of 
vorticity can be splitted into two mechanisms. Each 
mechanism can be solved in a small time step. 

( . ) 0
t
ω ω∂ + ∇ =
∂

U (12) 

21
Ret

ω ω∂ = ∇ +∇×
∂

f (13) 

In the first time step, transportation of vorticity is 
affected by convection, Eq. (12). In the second step, 
Eq. (13) is solved by generation of vorticity and 
diffusion of the vorticities. In this study, use was 
made of contact layer element model near the 
boundaries. The diffusion effect is more powerful 
than convection effect near the boundaries. 
Moreover, in this region, v x∂ ∂ is less than u y∂ ∂ .
So, the vorticities in this region can be calculated as, 

u yω ≈ −∂ ∂ (14) 
Assume that the vorticity is distributed near the wall 
by the thickness of α , smoothly (Fig. 13). The 
vorticity in this region can be evaluated via Eq. (14). 
Therefore, the asymptotic solution in the contact 
layer element is, 

2
0 1 2 ny y yω ω ω ω ω= + + +⋅ ⋅ ⋅+ (15) 

where ( )y O α= and iω is the order of different 
vorticities in the contact layer element. In the first 
time step, the vorticity is generated because of 
external forces and in the second step, these 
vorticities diffuse in the flow field. The thickness of 
α is divided into N element. Each element has iω
and its surface is dAi , thus the circulation is, 

. ( 1,2,... )i i dA i NiωΓ = = (16) 

iΓ can be divided into some bubble vortexes in each 
time step. The distribution of vortexes in each 
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element should result in linear profile of induced 
velocity, Fig. 12, and the shear stress in the element 
will be satisfied, Fig. 15. These vorticities diffuse 
into the flow field according to, 

2

t
ω ν ω∂ = ∇
∂

(17) 

where ν is the kinematic viscosity. The Green’s 
function in one-dimension is, 

( ) 21, 1 4 .exp
4

Gr y t t y
t

πν
ν
− =  

 

(18) 

Equation (18) is the same as a probability density 
function. 

( ) 2 2
2

1; 1 2 .exp
2

P tη πσ η
σ

 = − 
 

(19) 

where η is a Gaussian parameter and 2 tσ ν= is a 
standard deviation. Green’s function in two-
dimension is, 

( ) ( )2 21 1, , .exp
4 4

Gr x y t x y
t tπν ν

− ′ = + 
 

(20) 

Random motion of bubble vortex in contact layer 
element is alike to their motion in the flow field. 

iy α< means that the vortex is still in the contact 
layer and it will be eliminated. In the next time step, 
they will be appeared in a new position regard to 
boundary conditions. If yi is greater than α, the 
vortex was released to the flow field. So, we can 
write, 

( ) ( ) ( )j j jk j
k

t t t t+∆ = + ∆∑x x U x (21) 

where ( , )j xj yj=η η η is a two dimensional Gaussian 
number and ( )jkU x is the velocity included both 
potential background flow and vortex effects. In 
contact layer model, the velocity is assumed to be 
linear in the contact layer element. Thus, α should 
be chosen enough small to satisfy the linear velocity 
profile criteria. If we consider σ equals α and as 

2 tσ ν= ∆ , t∆ can be calculated and so on the other 
parameters will be specified. 
 

5 Combination of BEM and RVM 
with contact layer element model 
In each iteration, flow field without consideration of 
boundaries will be found by summation of free 
velocity field and induced vortex velocity. This 
velocity field is considered as a initial condition for 
the next iteration. The velocity in each point in the 
field can be obtained by using integral form of 
Laplace equation over boundaries. It leads to a 
system of n equations and the velocity is achieved 
for each point in the domain of the solution. 
Therefore, the vorticities in the contact layer 

element produced according to the obtained 
velocity. These vorticities simulate the convection 
term in the vorticity transport equation. Simulation 
of diffusion term is described in sec. 4. 
 
6 Results and Discussion 
In this study, combination of BEM and RVM with 
contact layer element model is used to study the 
velocity field over a flat plate. Two kinematic 
viscosities are considered with 1U∞ = and 1L = .
The plate is divided into 250 panels with thickness 
of α. 900 nodes are considered for the boundaries. 
The parameters are listed in table 1. maxΓ stands for 
the maximum of circulation for each bubble vortex. 
Considering the turbulence intensity less than 0.2%, 
the value of maxΓ is calculated. δ is the radius of 
bubble vortex core. We do not generate vortex over 
1 meter (the length of the plate). Figures 1 and 2 
show the boundary layer thickness. Velocity profiles 
for different cases illustrated in Figs. 3-10. 
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Table 1: Parameters in Random Vortex Method (RVM) 
Computational 

Parameter Re 1000L = Re 10000L =

( )2
max ecm SΓ -57.59 10× -57.59 10×

)(mα -32 10× -45 10×

( )mσ -32 10× -45 10×

( )mδ -32 10× -45 10×

( )t Sec∆ -32 10× -31.25 10×
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Fig 2. Boundary layer thickness with 
υ=0.001
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Fig 1. Boundary layer thickness with 
υ=0.0001
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Fig 14. discritization of vorticities in a contact 
layer element 

Fig 13. Shear stress over wall and contact layer 
element 
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