
 

 

Introduction 

 
Heat transfer and temperature distribution in the slabs made 
of steel or other material play an important role in thermal 
applications. 
Slabs in casting mould, or slabs in buildings structures or 
slabs in engines (Internal Combustion) have some times 
complex geometry; which make the use of numerical method 
easier for solving heat transfer problems rather than the 
complexity of the analytical solution associated with there 
practical engineering applications also non uniform boundary 
conditions, time dependent boundary conditions and 
temperature dependent properties. 
 
Heat transfer in slabs has been the subject of investigations 
for many researchers [1-6]. In these studies i.e M.Riyad 
H.Abdelkader[1] developed and verified an analytical 
solution for this problem. The final formula obtained was 
  

 

 
 
 

 
I.Kreja and et al[2] deals with the elaborated numerical 
analysis of some examples which elucidate most important 
features of the computer program prepared for the proposal 
formulation of heat transfer and temperature gradient at the 
phase change interface results for freezing slab are obtained 
in simulation of the 2-Dimensional infinite media. 
 
Micheal B. and et al[3] used a lines method technique for 
solving partial differential equations (PDEs) by typically 
using finite difference relationships for the spatial derivatives 
and ordinary differential equations for the time derivatives. A 
problem in unsteady-state heat transfer in a slab is 
numerically solved by the lines method. And it was found 
that the results which are obtained by the lines method 
indicated that there is a general agreement between the lines 
method and the results which are obtained by the hand 
calculation of a finite difference solution. 
 
Lars and et al[4] consider an inverse heat conduction 
problem, the sideways heat equation, which is the model of 
the problem where temperature distribution on both sides of a 
thick wall should be determined. Numerical measurements 
are executed on one side of the thick wall. The numerical 
implementation of Fourier and wavelet methods for solving 
the sideway heat equations was discussed. It was found 
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ABSTRACT: 
 The use of numerical methods for solving heat transfer problems is a result of the complexity of the 
analytical solution associated with practical engineering problems. 
 The present work represents a numerical solution using explicit and implicit techniques and the 
comparison with the analytical solution; of a heat transfer through a large slab of 0.3 mt thick steel armour plate 

initially at a uniform temperature of 710 Co . One surface is maintained at 710 Co while air is blown over the 

other surface which gives rise to an average heat-transfer coefficient of 113.4 
Cm

w
2

. The temperature of air is 

∞T = 318 Co . The surface temperature and the distribution after one hour had elapsed were measured. 

 The results obtained of both implicit and explicit methods gave the same degree of accuracy for the 
problem solved and also the result obtained agree with the analytical solution which was developed by the author 
in previous paper[1]; and only an error of about 1% is measured. 
 This work shows that the implicit method has the disadvantage of requiring complete set of calculations; 
so that the implicit method used when the time increments of physical or boundary conditions impose excessively 
small time increments for the convergence of the solution by the explicit formulation.  
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comparable accuracy between the numerical experiments and 
Daubechies wavelet.  
 
Blet and et al[5] used the finite element and boundary elemnt 
techniques to describe the temperature distribution and heat 
flux through slabs of continous casting process. 
 
Richard and et al[6] developed and verified a fundamental 
based model for low temperatures radiant  system and used a 
computer program to evaluate temperature distribution and 
heat flux variation through one dimensional transient 
conduction heat problem. 
 
Lars Eldl'en[7] consider a Cuchy problem for heat equation 
in quarter plane where data are given and a solution is sought 
in the interval 0<x<1, where temperature distribution on a 
thick wall should be determined for manufacturing purposes, 
the heat equation is discretuzed by a differential – difference 
equation, where the time derivative has been replaced by 
finite difference. An error estimate is obtained and gives 
information about how to choose the step length in the time 
discretization.  
 
 
In this work the one dimensional heat problem which is time 
dependent is solved numerically by Explicit and implicit 
methods which are introduced, and their degree of agreement 
with the analytical method[1] is investigated. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: schematic representation of steel slab 
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Numerical solution 
     In the numerical solution, two methods of solution were 
applied, the explicit and implicit methods. Steps involved in 
the numerical solution are as follows: 
 
1. All relevant information were assembled about the 
problem including geometry, boundary conditions and 
physical properties. 
 
2. The slab was divided into (N-1) equal parts resulting in 
N nodal planes as shown in fig 2. 
 
3. We assumed that 
  (a) The temperature of an element is represented by that at 
the node. 
  (b) The thermal conductivity to be used for the heat flow is 
constant.  
 
4. The energy balance was preformed on each element 
leading to an algebraic equation for the node representing 
the element. 
 
5. All equations were arranged in a suitable form so that 
they can be solved by explicit and implicit methods and the 
solution was obtained by using the computer. 
 
 
1 Explicit method 
       The slab of width, L, in the x direction having no 
temperature gradients in the y and the z directions. The slab 
is initially at a uniform temperature Ti. From time θ=0    
onwards, the left –face is maintained at constant temperature 
T0 and the right face is exposed to convective heat loss. We 
are interested in obtaining a numerical solution to this 
problem. The slab width, L, is divided into (N-1) equal parts 
resulting in N nodal planes as shown in figure (2). All the 
internal nodes have material of width (       ) associated them 
on either side of their center plane, while the boundary nodes 
have material of width (      ) on one side only. 

 
The energy conducted into node i across-sectional area, A, 
during a unit time is given by  
 
 
 
 
 
 
 
where the superscript t denotes temperatures at time 
We use a superscript to represent time to emphasize the 
unsteady nature of the problem and maintain a distinction 
between the space coordinates and the time coordinate. 
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In view of the unsteady nature of the problem, there is change 
of internal energy. ∆Ui in time ∆θ which is given by 
 
 
 
Where ρ is the density of the slab, c is the specific heat of the 

slab, and 
1+t

iT  denotes the temperature of the node i at time 

(θ + ∆θ).   To satisfy conservation of energy 
 
 
 
 
 
Or 
  

 …(1) 
  

      
     
Where the superscript (t+1) denotes the temperature at time 
(θ+∆θ).  

Solving for
1+t

iT , we obtain 

 
 

     
…(1a)  

    
Or 

 
  
  
    
Where 

j 
           …(1b) 
  
     
Equation (1-a) expresses the temperature at node i at time (θ 
+∆θ) in terms of the temperature at time θ. In this case since 
the temperature for θ = 0 are all equal to Ti and are known, 
future temperatures at time ∆θ at all the internal nodes can be 
computed with a pre-selected value of β. Once the 
temperature at all the nodes for time ∆θ are calculated, their 
values are used as input when computing the temperature for 
time 2∆θ, etc. 
 
       The equation for boundary nodal is  
 

0TT t

i =  For all θ > 0 or for t =1, 2, 3, ---- 

 
 The equation for the boundary node N can be obtained 
by performing an energy balance on the Nth node. It 
yields  
 
 
 
When appropriate expressions are substituted for each 
term in the above equation, we obtain 

 
 

Rearrangement gives 
 
 
 
 
Or 
 

 
 
(2) 
 
 
  

The temp at node 1 will be fixed, whereas that at node N 
will continually change until steady state is reached, and 
equation 1-2 gives the nodal temperature. 
This form of the difference equations is known as the 

explicit form, since the temperature 
1+t

iT  , 

corresponding to time (t +∆θ) can be solved for 

explicitly, only the temperatures,  
t

iT  , corresponding to 

time, t, appear in the right-hand sides of the equations 1-

a and (2). This is due to the use 
t

iT  in the energy 

balance for all the nodes and the associated stability 
criterion is 
 
                     

…(3)

  
      

With ∆X =.05 m ∆θ≤  0.0898 hr we assume ∆θ = .05 hr 
since the term in brackets in equation 3 is always less 
than one, it is apparent that to satisfy the stability 
criterion at a surface node with convection requires a 
smaller time increment than at an interior node. Thus, the 
surface node becomes the controlling factor for the 
maximum permissible value for ∆θ. When the unit 
surface conductance is large, the permissible value of the 
time increment may become so small that the 
computations by the explicit methods will require an 
exorbitant amount of time. In such cases the implicit 
method described later should be used. 
. 
A computer program which can perform the computation 
for the explicit method was developed. 
    
2 Implicit Method 
 The requirement that ∆θ should be restricted in size 
to insure stability sometimes results in an extremely small 
time step, of the order of a fraction of a second, especially 
when transient conduction a multiple layers is involved. 
The implicit formulation eliminates this restriction, but it 
involves solving simultaneous equations at each time step. 
Consider equation (4), which is reproduced below 
      
    

 (4)

    
The left-hand side represents the change of the internal 
energy due to the flow of heat associated with the "present" 
temperature gradients at time, θ, as written on the right-hand 
side. It is equally plausible that the change in internal energy 
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is due to the flow of heat associated with temperature 
gradients at time (θ+∆θ) leading to the following equation.
   
 

           (5) 
  
The above equation contains only one temp at time θ, that is, 
t

iT  whereas all the rest of the terms contain temperatures at 

time (θ+∆θ). Therefore, temperatures at (θ+∆θ) cannot be 
solved for explicity; instead, one has to solve the equations 
for all the nodes simultaneously after setting up equations for 
the internal and the boundary nodes. Such as implicit 
formulation is stable regardless of the value of the time 
increment, ∆θ that is chosen. An excessively large value of 
∆θ will cause large errors inherently associated with the finite 
difference method. 
 
From equation (5) 
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Solving for the nodal temperature 
1+t

iT : 
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 The expression for 
1+t

iT  involves other unknowns at 

the time level; hence the value of 
1+t

iT  cannot be determined 

from one equation as in the explicit method. Instead, all 
nodal temperatures are determined at once by solving all heat 
balances simultaneously by matrix inversion. 
 The heat balance at a surface point (node N) gives: 
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The heat balances for all 7 nodal points may be written in 
concise matrix form 
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This is a matrix equation of the form BUA =⋅ which may 

be solved for U by finding the inverse matrix A, 
1−A  or 

U= BA ⋅−1
. 

The transient temperature distribution is computed by 
executing such a matrix inversion at each time t. A computer 
program which can perform these computations was 
developed. 
 
 

Results 
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TEMPERATURE DISTIBUTION IN THE SLAB AFTER .9 HOURE ELAPSED

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

AXIAL DISTANCE,X, (m)

T
E
M
P
E
R
A
T
U
R
E
 (
C
)

IMPLICIT

EXPLICIT

ANALYTICAL

        FIGURE--4-

 
 

TEMPERATURE DISTRIBUTION IN THE SLAB AFTER ONE HOURE ELAPSED
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Discussion and Conclusion 
 The plots in figures 3, 4 and 5 reveal that the explicit 
and implicit methods give essentially the same degree of 
accuracy for the problem solved. The little difference there 
can be attributed to round off error in the calculations. Also 
there is a small difference between the analytical solution and 
the numerical solutions. This error has a maximum of about 
1%. 
 When the unstable case was run, the explicit 
solution contained some negative temperatures and asterisks 
were printed meaning the temperatures could not be 
calculated or printed. Over all, the results of this investigation 
turned out as expected. It was confirmed that the implicit 
method has the advantage that any time increment can be 
used. In fact, the time increment can be varied during the 
calculations. This was verified by running the unstable case. 
When this was done, the correct temperatures were obtained. 
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 Also Confirmed was the fact that the implicit 
method has the disadvantage of requiring a complete set of 
calculations (i.e. iteration of matrix inversion) at each ∆θ 
step. The implicit method is, therefore, used in practice when 
the physical or boundary conditions impose excessively small 
time increments for the convergence of the solution by the 
explicit formulation. 

 
 

References 
1- M.Riyad H.Abdelkader, "Analytical solution of one-

dimentional transient heat conduction problem in 
thick metal slab", IASME Transations, Issue 9, 
vol.2, pp.1624-1629, 2005. 

2- I,Kreja and B.B.Budkowaska "Fixed finite element 
model of heat transfer with phase change", 
International journal of offshore and polar 
engineering, vol.7.No.3, 1997. 

3- Michael B. and Mordechai Shacham "The numerical 
methods of Lines for partial differential equations" 

4- Lars Eld'en abd Fredrik Berntsson "Wavelet and 
Fourier methods for solving the sideways heat 
equation. SIAM J, scient.comput. vol.21 N.6 P.P 
2187-2205,2000 

5- Belet Kiflie and Dr.Ing Demiss – Almex [2000], 
Thermal analysis of continous  casting process, 
ESME 5

th
 Annual conference on manufacturing and 

process industry septemper2000. 
6- Richard K. strand and Curtis O. Perdersen. 

Analytical verification of heat source Transfer 
functions. Blast support of fic, Dept of Mechanical 
and Industrial Engineering University of Illiniot at 
Urban. Champagion 1206 W.Green 6t. Urban 
1261801 USA. 

7- Lars Eld\'en "Numerical solution of the sideways 
heat equation by difference approximation in time 
report LITH – MAT – R – 1994 – 40. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp380-384)


