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Abstract: - This paper is to show a numerical and theoretical analysis of vortex-wake generation for flow past three circular 
cylinders. The three cylinders are positioned in a T-shape and spaced at length ratios (s/r) from 2 to 8 and the Reynolds number range 
from 100 to 800. The numerical results show characteristics of the wakes changing considerably with the length ratios. This research 
showed the numerical solution for flow over three cylinders in a T-shape arrangement. From the numerical results, such as the path 
lines, one can conclude that the vortex generation and the wake region are affected by the spacing between the cylinders. For the 
length ratio of 2.0 one can see that the drag is minimized. 
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Nomenclature 
Symbol        Meaning   

cv Specific heat at constant volume 

e Internal energy 

e  Deformation Tensor   

fij Viscous forces 

I  Identity tensor 

ho Stagnation enthalpy 

k Thermal conductivity 

m Mass 

p Static pressure 

Q Heat generation 

t Time 

T Static temperature 

T  Stress tensor       

U Mean velocity component 

V Mean velocity component 

W Mean velocity component 

W Molecular Weight 

εij Rate of strain tensor 

γ Ratio of specific heat  

δij Kronecker delta 

ρ Density of fluid 

λ Bulk viscosity 

τij Shear stress 

μ Coefficient of viscosity 

 
1 Introduction 
Flow over external bodies has been studied extensively because 
of their many practical applications [1-3]. For example, flow 
past a circular cylinder, usually experiences strong flow 
oscillations and boundary layer separation in the wake region 
behind the body. As a fluid particle flows toward the leading 
edge of a cylinder, the pressure of the fluid particle increases 
from the free stream pressure to the stagnation pressure. The 
high fluid pressure near the leading edge of the cylinder forces 
flow about the cylinder as boundary layers develop about both 
sides.  

The boundary layer separates from the surface forms a free 
shear layer and is highly unstable. This shear layer will 
eventually roll into a discrete vortex and detach from the 
surface. A periodic flow motion will develop in the wake as a 
result of boundary layer vortices being shed alternatively from 
either side of the cylinder. The periodic nature of the vortex 
shedding phenomenon can sometimes lead to unwanted 
structural vibrations, especially when the shedding frequency 
matches one of the resonant frequencies of the structure.  

 Vortices shed alternatively from the cylinder and generate 
a regular vortex pattern in the wake. This regular pattern of 
vortices in the wake is called Karman vortex street.  It creates 
an oscillating flow at a discrete frequency that is correlated to 
the Reynolds number of the flow. Many numerical and 
experimental studies have focused on the dynamics of the bluff 
body wake and vortex street problems [4-6]. 
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A drag over moving body consists of two components: 
pressure drag and friction drag. Drag is due to the effect of 
viscosity. Pressure drag is a result of the eddying motions that 
are generated in the fluid due to the movement of the body. 
Pressure drag is related to the cross-sectional area of the body 
and it is associated with the formation of a wake it is also 
important for separated flows. Frictional drag is a result of the 
friction between the fluid and the surfaces over which it is 
flowing. Frictional drag is related to the surface area exposed to 
the flow and it is associated with the development of boundary 
layers it is also important for attached flows [4-5]. For a blunt 
body, pressure drag is the dominant source of drag, but for 
streamlined body friction drag is the dominant source of air 
resistance. In some applications of aerodynamics, a 
deceleration of a moving body is required therefore the 
prediction and controlling of the drag is essential [6&7].  

The work to be presented herein is a theoretical and 
numerical analysis of the complex fluid mechanism that occur 
over three circular bodies for different spacing ratios, 
specifically with regard to the vortex shedding and generation 
of wake. A number of important conclusions follow from the 
current research. First, study of the actual flow configuration 
over circular bodies offers some insight into the complex flow 
phenomena. Second, the characteristics of the vortex and wakes 
change considerably with the length ratio of the cylinders. This 
research showed the numerical solution for flow over three 
cylinders in a T-shape.  
 
2 Theoretical Analysis 
The main problem here is to determine velocity field and the 
states of the fluid: its pressure, density, and temperature at all 
time and all space. There are six unknowns u, v, w, p, ρ and T. 
with four independent variables x, y, z, and t. Hence six 
independent equations for these six unknowns are needed [8-
13].  

The equations for the conservation of mass, momentum, 
and energy, are written in terms of the dependent variables 
velocity, pressure and enthalpy. In steady laminar flow, the 
instantaneous value of a variable at any given position and time 
in space is equal to its mean value. 

Thermodynamic properties of a substance are not 
independent variables in a compressible flow. The manner in 
which any thermodynamic property is related to any two 
independent thermodynamic properties is referred to as an 
Equation of State. One equation of state for a perfect gas is the 
Ideal Gas Law: 

                RTp ρ=                                                     Eq. 1 

Where R is the universal gas constant divided by the molecular 
weight of the fluid. This simple linear relationship is important 
for a wide class of gaseous problems at sufficiently high 
temperatures and low pressures. However, at low temperature 
and high pressure near phase change, significant error can 
result by using the perfect gas equation. At these conditions, the 
gas is considered to exhibit real gas effects. Several models 
exist to model real gases, such as Van der Waals equation and 
the compressibility correction factor. 
 

2.2 Conservation of Mass 
Equation of continuity expresses the conservation of mass of 
the medium. Conservation of mass requires that mass can 
neither be destroyed nor created. In many engineering 
applications sometime it is preferable to write the natural 
equation, by using the index notation, especially when dealing 
with numerical analysis. The continuity equation in index 
notation is therefore: 
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In this equation, jV  represents the three-dimensional velocity 

vector components of the flow.   
 
2.1 Conservation of Momentum  
There are three equations of motion which express the 
conservation of momentum.  

( )Vm
dt
damF ==                                             Eq. 3 

The differential form of the momentum equation is: 
 

TF
Dt
VD

•∇+= ρρ                                                 Eq. 4 

Where T  is the stress tensor, and the constitutive model is: 
 

( ) eIVPT μλ 2+•∇+−=                                     Eq. 5 

Where, p is thermodynamic pressure, λ is the bulk viscosity 

where ( μλ
3
2

= ), I  is the identity tensor and e , is the 

deformation tensor.  The momentum equation is therefore: 
 

( )( )[ ]eIVpF
Dt
VD μλρρ 2+•∇+−•∇+=        Eq. 6 

One may write the shear stresses (viscous forces) as: 
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The x-momentum therefore is: 
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                                                                                      Eq. 13 
The y-momentum therefore is:  
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The z-momentum therefore is: 
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                                                                                     Eq.15 
The momentum equation can be written in tensor form where 
the shear stress tensor is used. The shear stress (viscous) tensor 
for Newtonian (linear fluid) therefore is: 
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Where ijδ is the kronecker delta and ijδ =1 for i=j and ijδ =0 

for i≠j, the momentum equation in tensor form is: 
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                                                                                           Eq. 17 
The three terms on the right-hand side of Eq. 17 represent the 
x-components of all forces due to the pressure, p, the viscous 
stress tensor,τij , and the body force, fi .  
 
2.3 Conservation of Energy Equation     
The differential form of the energy equation is written in the 
same way as the continuity and the momentum equation, 
namely, by using Green’s theorem, hence: 

 
            

( ) KQTVVFeVV
Dt
D

•∇−+••∇+•=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

• ρρρ
2

                                                                                            Eq. 18 
 

Therefore the differential form of the total energy equation can 
be written in the following form, where the stress tensor is used 
and the assumption of the Newtonian fluid applied implicitly:  
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                                                                                            Eq. 19 
In some engineering applications, sometimes one wishes to deal 
with the internal energy alone or in another instance one may 
wish to evaluate the mechanism of transferring energy from one 
mode to another, such as in turbulent flow or in viscous 
situations therefore it will be helpful to develop the energy 
equation in terms of the internal energy alone. One way to 
derive the internal energy is to subtract the kinetic energy 
equation from the total energy equation.   

The kinetic energy equation is obtained by using the dot 
product between two vectors namely the momentum equation 
and the velocity vector. Therefore the kinetic energy equation 
is:        
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                                                                                            Eq. 20 
One may subtract the kinetic energy obtained from dotting the 
velocity vector with the three directions of the momentum, 
therefore the internal energy equation may be written as:     
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For incompressible fluid, , therefore, Tce v=
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For compressible fluid, therefore: 
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In tensor form the energy equation therefore is: 
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A numerical analysis must start with breaking the 
computational domain into discrete sub-domains, which is the 
grid generation process. A grid must be provided in terms of 
the spatial coordinates (x, y and z location) of grid nodes 
distributed throughout the computational domain.  At each node 
in the domain, the numerical analysis will determine values for 
all dependent variables including pressure, velocity components 
and temperature.   

Considering an infinitesimal control volume, the two terms on 
the left-hand side of this equation describe the rate of increase 
of ho and the rate at which ho is transported into and out of the 
control volume by convection. The first term on the right-hand 
side describes the influence of the pressure on the total 
enthalpy. The second term describes the rate at which work is 
done against viscous stresses by distortion of the fluid. The 
gradient of Q is the rate of energy transfer into the control 
volume by conduction, and the last term describes the rate of 
work done by body forces. 

If the Navier-Stokes equations do not hold an equation of 
the stress tensor must be found and solved simultaneously with 
the four basic equations. Even when the Navier-Stokes relations 
hold, the relation of the coefficient of viscosity must be given 
with respect to the state variables of the fluid such as 
temperature and density. 

There are many other cases where the basic equations of 
fluid dynamics are not sufficient or should be modified such as 
in the cases of the two-phase flow, multi-fluid flow theory, 
relativistic fluid mechanics and biomechanics. 

3 Numerical Analysis 
Now, after stating all the flow equations, mass, 

momentum, energy, and the constitutive laws that govern the 
transport relations, it is time to formulate a solution. But, since, 
these equations are coupled nonlinear, partial differential 
equations, it is impossible to have a closed form of solution. In 

order to formulate or approximate a valid solution for these 
equations they must be solved using computational fluid 
dynamics technique. In order to solve these equations 
numerically with a computer, they must be discretized. That is, 
the continuous control volume equations must be applied to 
each discrete control volume that is formed by the 
computational grid. The integral equations are substituted with 
a set of linear algebraic equations solved at a discrete set of 
points.  

In a finite element discretization the grid breaks up the 
domain into elements over which the changes of the fluid 
variables are evaluated. Adding all the variations for each 
element then gives an overall visualization of how the variables 
vary over the entire domain. The primary advantage of the 
finite element method is the geometric flexibility allowed by a 
finite element grid. In a finite volume discretization the grid 
breaks up the domain into nodes, each associated with a 
discrete control volume. The fluxes of mass, momentum, and 
energy for each control volume are then calculated at each 
node.  An advantage of the finite volume method is that the 
principles of mass, momentum, and energy conservation are 
applied directly to each control volume, so that the integral 
conservation of quantities is exactly satisfied for any set of 
control volumes in the domain. Thus, even for a coarse grid, 
there is an exact integral flux balance [8]. 

The nodes must be distributed throughout the volume 
enclosed by the exterior boundary surface of the domain such 
that they form a complete three-dimensional matrix of nodes.  
Each node in the matrix will be referred to by the index triplet 
(i, j, k).    

 
     

Fig.1 Schematic view finite volume cell showing 
integration point, flux and node 
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3.1 Flux Elements 
To complete the description of the distribution of nodes in the 
computational domain, it is useful to introduce the concept of a 
flux element.  A flux element, such as shown in Figure 1, is a 
linear, hexahedral element defined by eight nodes.  Conforming 
to the finite element approach, linear shape functions 
representing the variation of variables within the flux element 
are applied [8].   
       Each flux element has four octants for two-dimensional 
domain and eight octants for three-dimension region. The six 
sides of each octant are divided into two groups; those that are 
coincident with the flux element sides and those that are in the 
interior of the flux element. Because the latter group will form 
the surfaces of the control volume over which surface integrals 
will be evaluated, they are referred to as, integration point 
surfaces, as shown in Figure 1. 
 
3.2 Control Volumes 
In finite volume method a control volume exists for each node, 
with the boundary of each interior control volume defined by 
eight line-segments in two dimensions and 24 quadrilateral 
surfaces in three dimensions. To solve the governing or the 
natural equations that were derived in theoretical section they 
must be converted to their discrete or algebraic form.  
                                  
3.3 Discretization 
Discretization is the process whereby the governing equations 
are converted by their discrete form. Discretization identifies 
the node locations and flux elements to model the flow 
problem. The differential equations are transformed to 
algebraic equations, which should correctly approximate the 
transport properties of the physical processes.   

Next, the fluxes are evaluated at integration points, which 
are shared by adjacent control volumes. The same flux that 
leaves one control volume enters the next one. Thus, even with 
a low accuracy advection scheme numerical conservation is 
guaranteed. This is the fundamental advantage of a finite 
volume method.  The discretization is evaluated in an elemental 
basis [8].     
 
4 Results and Discussion 
Figure 2 shows a schematic view of the three circular cylinders 
that are placed in T-Shape configuration. The length S is the 
distance between the leading circular cylinder and the centers 
of the aligned two cylinders. The length ratio is defined as the 
s/r, where r is the radius of the cylinder. The length ratio is 
varied from 2.0 to 8.0, for a range of Reynolds number from 
100 to 800. From the numerical solution one can study the 
characteristics of the vortex changing and wake generation for 
cross flow past three circular cylinders. This paper shows 
details of the vortex interference in the wake region of three 
circular cylinders.  
     Many researchers have studied variation of vortex 
generation according to the spacing between two cylinders in 
tandem arrangement [14 & 15]. Drag and vortex mode shape 
change across critical spacing [16]. There is a drastic change in 
vortex mode at critical spacing of about 3.5 to 4 [17]. Vortex 
wake pattern depend on whether or not there exist vortex 
shedding between the cylinders [14-17].  

 
Fig.2 Schematic view of three circular cylinders 

showing the boundary conditions for 
the numerical simulations 
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Figure 3 shows path lines for flow past three circular cylinders, 
the length ratio is 2.0. One can see the vortex generation and 
the wake region generated by the leading cylinder. One can 
conclude from this figure that the wake region generated by the 
leading cylinder is minimized by the present of the other two 
cylinders. The vortices that are generated at the aligned 
cylinders are affected by the wake of the leading cylinder and 
this has an influence in reducing vortex shedding of the aligned 
cylinders.  

The path lines for flow past three circular cylinders of 
length ratio of 4.0 are show in figure 4. One can notice that the 
wake region of the leading cylinder is grater than the one 
shown in figure 3. Figure 5 shows the path line for length ratio 
of 8.0, where one can see that the leading cylinder has little 
effect on the other two cylinders.      
  
 

Fig.3 Path lines for flow past three circular cylinders 
(s/r=2.0) 
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Fig.4 Path lines for flow past three circular cylinders 

(s/r=4.0) 

 
 
 

Fig.5 Path lines for flow past three circular cylinders 
(s/r=8.0) 

 
 
5 Conclusion 
The governing equations are a set of coupled nonlinear, partial 
differential equations. In order to formulate or approximate a 
valid solution for these equations they must be solved using 
computational fluid dynamics techniques. To solve the 
equations numerically they must be discretized. That is, the 
continuous control volume equations must be applied to each 
discrete control volume that is formed by the computational 
grid. The integral equations are replaced with a set of linear 
algebraic equations solved at a discrete set of points. 

This research showed the numerical solution for flow over 
three cylinders in a T-shape configuration. From the numerical 
results, such as the path lines, one can conclude that the vortex 
generation and the wake region are affected by the spacing 
between the cylinders. For the length ratio of 2.0 one can see 
that the drag is minimized. 
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