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Abstract: – This paper deals with the-state space representation of a nonlinear model of a pipeline. First, the mathematical
model of the pipeline is presented in its normalized form. Then the method of characteristics is used to transform the model
into a form suitable for representing the model in state space. The resulting nonlinear state space-model is verified using
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1 Introduction

Observer-based-leak detection and localisation schemes,
for example, require a pipeline model to compute the states
of the pipeline without a leak [1], [2]. The first industrial
applications demonstrated the performance of observer-
based methods [3]. In these schemes the observer is de-
rived using a mathematical model of the pipeline. The one-
dimensional compressible fluid flow through the pipelines
is governed by nonlinear partial differential equations [4].
The pipelines are, therefore, distributed parameter systems.
To date, there is no general closed-form solution for such
systems Numerical approaches, like the method of charac-
teristics, are used instead [5], yielding the computational
background for the observer algorithms. These equations
can also be written in the state-space representation form,
which is suitable for the simulation and application of a
broad variety of control algorithms. The aim of this pa-
per is to present a nonlinear distributed parameter model
of pipelines, to transform it into the state-space form and
to verify it on data obtained by measurements on a real
pipeline. The paper is organized as follows: In Section
2 the model of the pipeline is derived. It is a nonlinear dis-
tributed parameter model, so one of the possible solutions
– the method of characteristics – is presented in Section 3.
The equations of the method of characteristics are trans-
formed into the state representation form in Section 4. The
simulation of the obtained model and its verification on real
pipeline data is given in the Section 5.

2 Mathematical model of the
pipeline

The classical solution for unsteady-flow problems is ob-
tained by using the equations for continuity, momentum
and energy. These equations correspond to the physical
principles of mass, momentum and energy conservation.
Applying these equations leads to a coupled non-linear set
of partial differential equations, which are very difficult to
solve analytically. To date, there is no general closed-form
solution. Further problems arise in the case of turbulent
flow, which introduces stochastic flow behavior. Therefore,
the mathematical derivation for the flow through a pipeline
is a mixture of both theoretical and empirical approaches.

The following assumptions are made when deriving
for the derivation of a mathematical model of the flow
through pipelines:

1. The fluid is compressible. Compressibility of the
fluid results in an unsteady flow.

2. The flow is viscous. Viscosity causes shear stresses
in a moving fluid, and these stresses are taken into ac-
count.

3. The flow is adiabatic.No transfer of energy between
the fluid and the pipeline is considered. Therefore, the
temperatureT along the pipeline is constant.

4. The flow is one-dimensional. All the characteris-
tics of the pipeline, such as velocityv and pressure
p, depend only on the position along thex-axis of the
pipeline.
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Figure 1: Illustration of characteristics

The application of the continuity and momentum
equations [6] in conservative form for the one-dimensional
case, the formula of Darcy and Weisbach [7] and the for-
mula of Colebrook [7] lead to the following mathematical
model of a pipeline [8]:

dρ

dt
+ ρ

∂v

∂x
= 0 (1)

dv

dt
+

1
ρ

∂p

∂x
+ g sin α +

λv|v|
2D

= 0 (2)

dp

dt
− a2 dρ

dt
= 0 (3)

with densityρ(x), velocity v(x), pressurep(x), diameter
D, dimensionless friction coefficientλ(v), and (isentropic)
speed of sounda of the fluid.g sinα is the x-component of
the standard gravity vectorg.

Using the method of characteristics [5] the following
set of equations is obtained

dp + a ρ̄ dv + p̃ ds = 0
a dt− ds = 0

(4)

is valid alongC+, the second one

dp− a ρ̄ dv + p̃ ds = 0
a dt + ds = 0

(5)

is valid alongC−, and the third one

a2 dρ

dt
− dp

dt
= 0

v dt− ds = 0
(6)

is valid alongCF . Thespecific pressure lossis given by

p̃ ≡ ρ̄

(
g sin α +

1
2

λ v |v|
D

)
(7)

whereC+, C− andCF are characteristics corresponding
to the velocity of sound and the flow, respectively, as il-
lustrated in Fig. 1 Introducing the normalized timet′ and
lengths′ as well as theMach-numberMa

t′ ≡ a t

L
v′ ≡ Fr2 Ma

Ma ≡ ds′

dt′
=

ds

L
a dt

L

=
v

a
s′ ≡ s

L

whereL is the length of the pipeline, thenormalizedpiezo-
metric head, thenormalizedspecific pressure loss̃p′, the
normalized density

h ≡ p

g ρ̄ L
p̃′ ≡ p̃

g ρ̄
ρ′ ≡ ρ

ρ̄
(8)

the normalized diameterd ≡ D

L
, thenormalizedspecific

pressure loss̃p′ is given by

p̃′ ≡ p̃

g ρ̄
= sin α + R λ v′ |v′| (9)

where theresistance-numberand theFroude-number

R ≡ 1
2

1
Fr2 d

Fr ≡ a√
g L

(10)

we get the normalized model of a pipeline for
(C+)

dh + dv′ + p̃′ ds′ = 0
dt′ − ds′ = 0

(11)

(C−)

dh− dv′ + p̃′ ds′ = 0
dt′ + ds′ = 0

(12)

and (CF )

Fr2dρ′ − dh = 0
Ma dt′ − ds′ = 0

(13)

3 Numerical Solution by the Method
of Characteristics

We now want to find a numerical solution for (11) and (12)
using (9). Applying the method of characteristics to the
inner points1 ≤ i ≤ N − 1, gives

(
hi(k + 1)− hi−ξ(k)

)
+

+
(

v′i(k + 1)− v′i−ξ(k)
)

+ ∆t′ p̃′i−ξ(k) = 0
(

hi(k + 1)− hi+ψ(k)
)
−

+
(

v′i(k + 1)− v′i+ψ(k)
)
−∆t′ p̃′i+ψ(k) = 0

(14)

By adding and subtracting equations 14 we get

2 hi(k + 1) =
(

hi−ξ(k) + hi+ψ(k)
)

+

+
(

v′i−ξ(k)− v′i+ψ(k)
)
−∆t′

(
p̃′i−ξ(k)− p̃′i+ψ(k)

)

2 v′i(k + 1) =
(

v′i−ξ(k) + v′i+ψ(k)
)

+

+
(

hi−ξ(k)− hi+ψ(k)
)
−∆t′

(
p̃′i−ξ(k) + p̃′i+ψ(k)

)

(15)
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For the (CF ) characteristic we get

(
ρ′i(k + 1)− ρ′i−ζ(k)

)
−

− 1
Fr2

(
hi(k + 1)− hi−ζ(k)

)
= 0

(16)

For the inleti = 0 and the outleti = N we have to
choose the appropriate boundary conditions. In this case
we chooseh0(k + 1) for the inlet andhN (k + 1) for the
outlet. This leads to

v′0(k + 1) = v′0+ψ(k) +
(

h0(k + 1)− h0+ψ(k)
)
−

−∆t′ p̃′0+ψ(k)

v′N (k + 1) = v′N−ξ(k)−
(

hN (k + 1)− hN−ξ(k)
)
−

−∆t′ p̃′N−ξ(k)
(17)

With respect to the (CF ) characteristic the boundary con-
dition for ρ at the inlet of the pipeline are required. The
densityρ at the outlet is determined in the same way as for
the inner points

(
ρ′N (k + 1)− ρ′N−ζ(k)

)
−

− 1
Fr2

(
hN (k + 1)− hN−ζ(k)

)
= 0

(18)

The resulting solution algorithm is given by (15), (16) to-
gether with (17), (18).

4 The State-Space Representation

First of all, we rearrange (15);

2 hi(k + 1) =
(

hi−ξ(k) + v′i−ξ(k)
)

+

+
(

hi+ψ(k)− v′i+ψ(k)
)
−∆t′

(
p̃′i−ξ(k)− p̃′i+ψ(k)

)

2 v′i(k + 1) =
(

hi−ξ(k) + v′i−ξ(k)
)

+ (19)

+
(
−hi+ψ(k) + v′i+ψ(k)

)
−∆t′

(
p̃′i−ξ(k) + p̃′i+ψ(k)

)

and introduce (19) into (16):

2 ρ′i(k + 1) = 2 ρ′i−ζ(k) +
1

Fr2

((
hi−ξ(k) + v′i−ξ(k)

)
+

+
(
hi+ψ(k)− v′i+ψ(k)

)− (20)

−∆t′
(
p̃′i−ξ(k)− p̃′i+ψ(k)

)− 2 hi−ζ(k)
)

The quantitieshi−ξ(k), v′i−ξ, hi+ψ(k), v′i+ψ(k), p̃′i−ξ(k)
andp̃′i+ψ(k) are obtained by linear interpolation as follows

hi−ξ(k) = γhi−1(k) + (1− γ)hi(k)
v′i−ξ(k) = γv′i−1(k) + (1− γ)v′i(k)

p̃′i−ξ(k) = γp̃′i−1(k) + (1− γ)p̃′i(k)

hi+ψ(k) = γhi+1(k) + (1− γ)hi(k)
v′i+ψ(k) = γv′i+1(k) + (1− γ)v′i(k)

p̃′i+ψ(k) = γp̃′i+1(k) + (1− γ)p̃′i(k)

hi−ζ(k) = γMaihi−1(k) + (1− γMai)hi(k)

ρ′i−ζ(k) = γMaiρ′i−1(k) + (1− γMai)ρ′i(k)

(21)

where

γ =
∆t′

∆s′
Mai =

v′i
Fr2

(22)

Introducing (21) into (19) and (21) we obtain

2 hi(k + 1) = γ

(
hi−1(k) + v′i−1(k)

)
+ 2 (1− γ)hi(k)+

+ γ

(
hi+1(k)− v′i+1(k)

)
−∆t′ γ

(
p̃′i−1(k)− p̃′i+1(k)

)

2 v′i(k + 1) = γ

(
hi−1(k) + v′i−1(k)

)
+ 2 (1− γ)v′i(k)+

+ γ

(
−hi+1(k) + v′i+1(k)

)
−

−∆t′
(

γp̃′i−1(k) + 2 (1− γ)p̃′i(k) + γp̃′i+1(k)
)

2 ρ′i(k + 1) =
1

Fr2

(
γ
(
(1− 2Mai)hi−1(k) + v′i−1(k)

)
+

+ 2 (Mai − 1)γhi(k)+

+ γ
(
hi+1(k)− v′i+1(k)

)−∆t′ γ
(
p̃′i−1(k)− p̃′i+1(k)

))
+

+ 2
(
γMaiρ′i−1(k) + (1− γMai)ρ′i(k)

)
(23)

Let us introduce the state element vector

xi ≡



hi

v′i
ρ′i




Vector/matrix-notation leads to

2xi(k + 1) = A+,i
γ xi−1(k) + 2AI,i

1−γxi(k) + A−,i
γ xi+1(k)−

−∆t′
(
a+

γ p̃′i−1(k) + 2 a0
1−γ p̃′i(k) + a−γ p̃′i+1(k)

)
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with

Ai+
γ ≡ γ




1 1 0
1 1 0

1−2Mai

Fr2
1

Fr2 2Mai




Ai−
γ ≡ γ




1 −1 0
−1 1 0
1

Fr2 − 1
Fr2 0




Ai,I
1−γ ≡




1− γ 0 0
0 1− γ 0

γ Mai−1
Fr2 0 1− γMai




a+
γ ≡ γ




1
1
1

Fr2




a−γ ≡ γ



−1
1

− 1
Fr2




a0
1−γ ≡ (1− γ)




0
1
0




(24)

Vectorization results in

2




x1(k + 1)
x2(k + 1)

...

...
xN−2(k + 1)
xN−1(k + 1)




=
[
A1 0
0 A2

]




x0(k)
x1(k)

...

...

...
xN−1(k)
xN (k)




−

−∆t′
[
a1 0
0 a2

]




p̃′0(k)
p̃′1(k)

...

...

...
p̃′N−1(k)
p̃′N (k)




(25)

where because of the lack of space the matrices are written
in a distributed form:0 is the zero-matrix and

A1 =



A1+

γ 2A1,I
1−γ A1−

γ 0 . . .

0 A2+
γ 2A2,I

1−γ A2−
γ . . .

...
...

. . .
. ..

.. .




A2 =




.. .
.. .

. . .
...

...
. . . a+

γ 2a0
1−γ a−γ 0

. . . 0 a+
γ 2a0

1−γ a−γ




a1 =



a+

γ 2a0
1−γ a−γ 0 0 . . .

0 a+
γ 2a0

1−γ a−γ 0 . . .
...

...
.. .

. ..
. ..

. . .




a2 =




. ..
.. .

. ..
.. .

...
...

. . . 0 a+
γ 2a0

1−γ a−γ 0
. . . 0 0 a+

γ 2a0
1−γ a−γ




We now have to include the boundary conditions (17)
and (18). The linear interpolation (21) fori = 0, N , re-
spectively, yields

v′0(k + 1) = −
(

γh1(k) + (1− γ)h0(k)
)

+

+
(

γv′1(k) + (1− γ)v′0(k)
)
−

−∆t′
(

γp̃′1(k) + (1− γ)p̃′0(k)
)

+ h0(k + 1)

v′N (k + 1) =
(

γhN−1(k) + (1− γ)hN (k)
)

+

+
(

γv′N−1(k) + (1− γ)v′N (k)
)
−

−∆t′
(

γp̃′N−1(k) + (1− γ)p̃′N (k)
)
− hN (k + 1)

ρ′N (k + 1) =
1

Fr2

(
hN (k + 1)−

− (
γMaNhN−1(k) + (1− γMaN )hN (k)

))
+

+ γMaNρ′N−1(k) + (1− γMaN )ρ′N (k)

Applying similar procedures for the inlet and outlet
and defining the following vectors:

• the linear part state vectorx ∈ <2(N+1) by

x ≡




x0

...
xN


 (26)

• the nonlinear part state vectorp̃′ ∈ <(N+1) by

p̃′ ≡




p̃′0
...

p̃′N


 (27)

• the input vector̆u ∈ <2 by 1

ŭ ≡



h0

hN

ρ′0


 (28)

• the output vectory ∈ <4 by

y ≡




h0

v′0
ρ′0
hN

v′N
ρ′N




=
[
x0

xN

]
(29)

1The input vectoru will be defined later.
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we can complete (25), and obtain thenonlinear state-space
form

x(k + 1) = AL x(k)−ANL p̃′(k) + B̆ ŭ(k + 1)
y(k + 1) = C x(k + 1)

(30)

with the(3(N +1))×(3(N +1)) linear part system matrix

AL =
1
2

[
A3 0
0 A4

]
(31)

where because of the lack of space the matrix is written in
a distributed form and

A3 =




2 A0
1−γ 2 A0

γ 0 0 . . .

A1+
γ 2 A1,I

1−γ A1−
γ 0 . . .

0 A2+
γ 2 A2,I

1−γ A2−
γ . . .

...
...

.. .
. . .

. ..




A4 =2
66664

. . .
. . .

. . .
...

...
. . . A

(N−2)+
γ 2 A

(N−2),I
1−γ A

(N−2)−
γ 0

. . . 0 A
(N−1)+
γ 2 A

(N−1),I
1−γ A

(N−1)−
γ

. . . 0 0 2 AN
γ 2 AN

1−γ

3
77775

the(3 (N + 1))× (N + 1) nonlinear part system matrix

ANL =
∆t′

2

[
a3 0
0 a4

]

a3 =




2 a0
1−γ 2 a0

γ 0 0 . . .
a+

γ 2 a0
1−γ a−γ 0 . . .

0 a+
γ 2 a0

1−γ a−γ . . .
...

...
. ..

. ..
. . .




a4 =




. ..
. ..

. . .
...

...
. . . a+

γ 2 a0
1−γ a−γ 0

. . . 0 a+
γ 2 a0

1−γ a−γ
. . . 0 0 2 aN

γ 2 aN
1−γ




the(3 (N + 1))× 3 control matrix

B̆ =
1
2




2 U0

0
0
...
...
0
0

2 UN




and the6× (3 (N + 1)) measurement matrix

C =
[
I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I

]

with the3x3 identity matrixI.

The last thing to do is to investigate thẽp′ in (30).
Using (9), we obtain for theith element ofp̃′

p̃′i = sin αi + Rλ v′i |v′i| = sin αi + R λ |x′i|



0 0 0
0 1 0
0 0 0


 xi

= sin αi + R λ |x′i|A0 xi

with

A0 ≡



0 0 0
0 1 0
0 0 0




and after vectorization

p̃′ = sinsinsinααα + R λ |X′|A0
NL x (32)

with the(N + 1)) × 1 inclination vectorand the(3 (N +
1))× (N + 1) state matrix

sinsinsinααα ≡




sin α0

...
sin αN


 X ≡



x0 . . . 0
...

.. .
...

0 . . . xN




respectively and further the(3 (N + 1))× 3 (N + 1) non-
linear part system matrix

A0
NL ≡



A0 . . . 0
...

.. .
...

0 . . . A0




Defining

∆A[x(k)] ≡ R λ ANL |X′(k)|A0
NL

A[x(k)] ≡ AL −∆A[x(k)]

u ≡ B̆ ŭ−ANL sinsinsinααα = B̆ ŭ− uα

with
uα ≡ ANL sinsinsinααα

we finally obtain

x(k + 1) = (AL −∆A[x(k)]) x(k) + u(k + 1)
= A[x(k)] x(k) + u(k + 1)

y(k + 1) = C x(k + 1)
(33)

This is a slightly nonlinear system due to∆A[x(k)].

5 Simulation and verification of the
model

The models were verified on a real pipeline with the fol-
lowing data: length of the pipelineLp = 9854 m, velocity
of sounda = 1116 m/s, friction coefficientλ = 0.0172,
gravity constantg = 9.81 m/s2, diameterD = 0.2065 m,
inclinationα = −0.00256 rad.

The fluid transients were generated for the experimen-
tal verification by closing a shunt valve at the outlet of the
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Figure 2: Pressures at the inlet (upper line) and the outlet
(lower line)

pipeline att = 170s and opening it again att = 503s. This
leads to the rapid pressure increase and decrease, shown in
Figure 2, causing fluid transients. There is no controller
for the flow rate or the pump pressure. The flow transients
are shown in Figures 3 and 4 for the inlet and outlet of
the pipeline, respectively. The responses of the state-space
model to the pressure changes shown in Figure 2 are de-
picted by a solid line whereas the measured velocities are
indicated by a dashed line. Good agreement between the
model’s responses and the measured data can be observed.
The average error in the steady-state responses is 0.0859%.
These small deviations in the throttled flow velocities at the
outlet of the pipeline are probably due to using a constant
value forλ, which should, according to Colebrook, be de-
pendent on the flow velocity.

The conformance during the transients is very good;
the mean square errors during the transients at the inlet
and outlet are 6.14e-4 and 5.26e-4, respectively, which is
comparable to the variances of the corresponding measure-
ments (2.06e-4 and 6.64e-5). This verifies the derived state-
space model of the pipeline, especially its static and dy-
namic responses.

6 Conclusion

The state-space model of a pipeline was derived using the
assumptions of compressible, viscous and adiabatic one-
dimensional flow. The model, in the form of partial dif-
ferential equations, was solved numerically by the method
of characteristics and the resulting model was represented
in the state-space form. Normalized quantities were in-
troduced in order to reduce the numerical sensitivity. The
model was verified using data measured on a real pipeline.
The good agreement between the measured and the sim-
ulated data, especially during the transients, validates the
derived model. An improvement to the model with respect
to the non-linear dependency ofλ on the flow velocity (the
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Figure 3: Flow velocity at the inlet of the pipeline
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Figure 4: Flow velocity at the outlet of the pipeline

formula of Colebrook) is planned for the near future.
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