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Abstract: -This paper gives a detailed system theoretical treatment of the heat flux theory in the linear heat 
conduction based on the Laplace transformation method. By restricting the investigations to the simplest 
geometrical structures occurring in the practice, the authors prove the criteria guaranteeing the existence of the 
convolutional representations of the heat flux depending on the known temperature. 
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1 Introduction 
Let us consider the linear heat equation in one space 
variable x 
 

,
t

)t,x(1)t,x(
∂

ϑ∂
κ

=ϑΔ           0,t > Ix∈ ,  (1) 

 
where I denotes a finite, or a semi-infinite 
interval, κΔ,  denote the Laplace operator, and the 
thermal diffusivity, respectively. We shall assume 
in the sequel that the initial condition equals to zero 
 

( ,0) 0,xϑ =   (2) 
 
for every inner point of the interval I. The unicity of 
the solution of (1) is guaranteed by the initial 
condition (2) and the boundary conditions. 
However, from the view-point of the theory and 
applications of the heat flux, the knowledge of the 

boundary conditions is generally superfluous and 
uninteresting. 

The main problems of the theory of the heat 
flux can be formulated as follows. Let an arbitrary 
linear heat conduction process be given satisfying 
(1), (2), moreover let x, x0, x1, x2, )xx( 21 ≠ be 
arbitrary points of I. 
 
Problem I. What is the connection between the heat 
flux at the point x, and the temperature at the point 
x0 on the time interval 0<t<∞ , provided that the 
temperature determines the heat flux uniquely. One 
input – problem. 
Problem II. What is the connection between the 
heat flux at the point x, and the temperatures at the 
points x1, x2,, on the time interval 0<t<∞ , provided 
that the temperatures determine the heat flux 
uniquely. Two – inputs – problem. 
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Problem III. What is the connection between the 
heat flux at the point x, and the temperature and 
heat flux at the points x1, x2, respectively, on the 
time interval 0<t<∞ , provided that the latter 
determine the previous quantity uniquely. Two – 
inputs – problem. 
 

We shall call Problem II the pure problem 
and Problem III the mixed problem of theory of the 
heat flux, respectively. 

The heat flux is by definition: 
 

,
x

)t,x(K)t,x(j
∂
ϑ∂

−=   (3)
 

 
where K denotes the thermal conductivity. In the 
sequel we assume that the quantities κ , K are 
constants not depending on position, time and 
temperature. 

By restricting ourselves to the simplest 
geometrical structures, we shall solve the above 
problem I. by the application of the Laplace 
transformation method using a system theoretical 
treatment. We assume that the functions under 
consideration are Laplace transformable and that the 
time functions, which are obtained by the inverse 
Laplace transformation, describe the concrete heat 
flux problem. 
 
 
2 The solution of problem I. 
By transforming (1), and taking into account (2), we 
obtain 
 

( , ) ( , ) 0,sx s x s
κ

ΔΘ − Θ =   (4) 

 
where 

dte)t,x()s,x( st

0

−
∞

∫ϑ=Θ .  (5) 

Let )s,x(),s,x( 21 ΘΘ  two linearly independent 
solutions of (5). The general solution is of the for 
 

),s,x()s()s,x()s()s,x( 21 Θβ+Θα=Θ    (6) 
 
where )s(),s( βα are arbitrary functions of the 
complex variable s. 

We have by (6) 
),s,x()s()s,x()s()s,x( 02010 Θβ+Θα=Θ  (7) 
),s,x()s()s,x()s()s,x( 21 Θ′β+Θ′α=Θ′  (8) 

( ' denotes the derivative 
dx
d

). It is easily seen that 

the quantity )sx( 0Θ  does not determine uniquely 
the value of )s,x(Θ′  in general. In this paragraph 
we shall restrict ourselves to such structures, where 
only one of the linearly independent solutions of (5) 
should be considered. Let us denote this solution by 
f (x, s). So we have 
 

),s,x(f)s()s,x( α=Θ  

),s,x(f)s()s,x(
),s,x(f)s()s,x( 00

′α=Θ′
α=Θ

  (9) 

 
and 
 

,
)s,x(f
)s,x(f)s,x()s,x(

0
0

′
Θ=Θ′   (10) 

)s,x(f
)s,x(f)s,x(K)s,x(K

0
0

′
Θ−=Θ′− . (11) 

By introducing the notations 

)s,x(f
)s,x(fK)s,x,x(H

0
0

′
−=   (12) 

 
(11) can be written as 
 

)s,x,x(H)s,x()s,x(J 00Θ= .  (13) 
 
The equation (13) describes a transmission system, 
the scheme of which is illustrated in fig. 1. 
 

 
Fig. 1 Transmission system model of the heat flux 

 
This scheme symbolises the connection between the 
input (temperature) and the output (heat flux). The 
function H (x, x0, s) being the quotient of the 
Laplace transforms of the output and input, is called 
the transfer function of the system. (see Fodor [2], 
Kaplan [3]). 
 
It follows from the convolution theorem of the 
Laplace transformation, that if there exists the time 
function h (x, x0, t) having the Laplace transform H 
(x, x0, s) then by inverting (1,6), the heat flux can be 
written in the form of the convolution integral. 

0 0
0

( , ) ( , ) ( , , ) ,
t

j x t x t h x x dϑ τ τ τ= −∫   (14) 
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having a great practical importance. 
If the transfer function has no inverse in the 

time domain, then as we shall see in special cases, 
the function 

)s,x,x(H
1

0
 

 
will be invertable. Denoting its inverse by h*(x, x0, 
t), (13) is equivalent to the following convolution 
type integral equation of the first kind. 
 

0 0
0

( , ) , , ) ( , ).
t

j x h x x t d x tτ τ τ ϑ∗ − =∫  (15) 

 
We cannot give the explicit form of the solution of 
(15) in general, since (15) cannot be reduced to an 
integral equation of the second kind, the solution of 
which is represented by Neumann series. However, 
in special cases we give the explicit solution of (15), 
but not in the form of a convolution type integral. 

So the knowledge of the criteria deciding about 
the two cases above is very important in the 
practice. We shall prove these simple criteria for the 
following geometrical structures 
 
 The semi-infinite rod (or wall) 

),0(I ∞= . 
 The region bounded internally by a sphere 

[ ,),aI ∞=     a>0. 
 The sphere 

),a,0(I =      a>0. 
 The region bounded internally by an infinite 

circular cylinder 
[ ),,aI ∞=    a>0. 

 The infinite circular cylinder  
[ ),a,0I =      a>0. 

 
 
2.1 The semi-infinite rod (or wall) 

,e)s,x(f
x

k
s

−
=  (16) 

 
(see Fodor [2], Doetsch [7] ). We have by (12), that 
 

)xx(
k
s

0
0

e
k
sK)s,x,x(H

−−
=  (17) 

 
holds. Let x> xo. Then 
 

2
0( )2

0 4
0

( )( , , ) 1 ,
22

x x
ktx xKh x x t e

ktt ktπ

−
−⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

  (18) 

 
see for example (Ditkin - Prudnikov [4] ). It follows 
from (14), that 
 

.e1
k2

)xx(
k

1)t,x(
2
K)t,x(j

d
kt4

)xx(2
0

0

t

0

2
0 τ

−
−

⎥
⎦

⎤
⎢
⎣

⎡
−

τ
−

τπτ
τ−ϑ= ∫   (19) 

 
Let x≤ x0. Then the inverse Laplace transform of 
(17) does not exists, since 
 

0e
k
slim

)xx(
k
s

s

0

≠
−−

∞→
            (see [3]). (20) 

 

The inverse of the function 
)sx,x(H

1

0

 exists. We 

have by [4]  
 

,
kt4

)xx(exp
t

k
K
1)t,x,x(h

2
0

0 ⎥
⎦

⎤
⎢
⎣

⎡ −
−

π
=∗  (21) 

 
and taking into account (15) the following integral 
equation will be obtained 
 

2
0

0
0

( )exp
4 ( )

( , ) ( , ).
t

x x
k t

j x d K x t
kt

τ πτ τ ϑ
τ

⎡ ⎤−
−⎢ ⎥−⎣ ⎦ =

−∫  (22) 

 
The kernel of (8) and its derivatives of arbitrary 
high order vanish for t=0, if x<x0. So (22) cannot be 
reduced to an integral equation of the second kind 
and the explicit solution of (22) cannot be given. 
(see Fenyő-Stolle [5] ) For x=x0 we obtain from 
(13), (15): 
 

).s,x(s
ks
1K)s,x(

k
sK)s,x(J 000 Θ=Θ=  (23) 

 
Let x0 be an arbitrary inner point of the domain I. 
Since )t,x( 0ϑ is absolutely continuous and 

0)0,x( 0 =ϑ , by inverting (23) we obtain 

τ
τ−

⋅
τ∂
τϑ∂

π
= ∫ d

t
1),x(

k
K)t,x(j

t

0

0
0 . (24) 

 
The convolution occurring on the right-hand side of 
(24) contains the derivative of the temperature (not 
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the temperature itself). So we rewrite this formula 
as follows. Let 0< ε <t  
 
An integration by parts gives, 
 

0 0

0 0
30 0

0 0 0 2

( , ) ( , )
( , ) ( , )1lim lim

2 ( )

t t t
x x

x t xd d d
t t t

ε ε

ε ε

ϑ τ ϑ ατ
ϑ ε ϑ ττ ττ τ τ

τ τ ε τ

− −

→ →

∂ ∂ ⎡ ⎤
−∂ ∂ ⎢ ⎥= = − =⎢ ⎥− − −⎢ ⎥⎣ ⎦

∫ ∫ ∫

 

0 0 0
0 3 30

0 02 2

( , ) ( , ) ( , )1 1lim ( , )
2 2

( ) ( )

t tx t x t xdx t d
t t

ε ε

ε

ϑ ε ϑ ϑ ττϑ τ
ε τ τ

− −

→

⎡ ⎤
− −⎢ ⎥= − + =⎢ ⎥

− −⎢ ⎥⎣ ⎦
∫ ∫

 

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
τ

τ−

τϑ−ϑ
+

ϑ
+

ε
ϑ−ε−ϑ

= ∫
ε−

→ε

t

0 2
3

00000
0

d

)t(

),x()t,x(
2
1

t
)t,x()t,x()t,x(lim

 

∫ τ

τ−

τϑ−ϑ
+

ϑ
=

t

0 2
3

000 .d

)t(

),x()t,x(
2
1

t
)t,x(  (25) 

 
Finally we have 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
τ

τ−

τϑ−ϑ
+

ϑ
πκ

= ∫
t

0 2
3

000
,0 d

)t(

),x()t,x(
2
1

t
)t,x(K)tx(j . (26) 

 
In other form 
 

,
t

)t,x(K)t,x(j
2
1

2
1

∂

ϑ∂
κ

=     t>0. (27) 

 
Let now x0=0 and let )t,0(ϑ  absolutely continuous. 
Then by inverting the formula (23) 
 

0

(0, 1 (0,0)(0, )
tK Kj t d

t t
ϑ τ ϑτ
τπκ τ πκ

∂
= +

∂ −∫  (28) 

 
is obtained. Analogously to the previous case a 

simple calculation shows that 
t

)0,0(K
πκ
ϑ

 falls out 

and 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
τ

τ−

τϑ−ϑ
+

ϑ
πκ

= ∫
t

0 2
3 d

)t(

),0()t,0(
2
1

t
)t,0(K)t,0(j .  (29) 

 
In other form 
 

2
1

2
1

t

)t,x(K)t,x(j
∂

ϑ∂
κ

=   ,       t>0. (30) 

 
This formula can be found in Oldham - Spanier [6], 
the conditions of the validity of the above formula 
however, are not given in [6]. 
 
 
2.2 The region bounded internally by a 
sphere 

x
e)s,x(f

xs
κ

−

=  (31) 

 
(see [1] ) and we obtain 
 

)xx(s

2
0

)xx(s0

0
00

e
x

Kxe
x

sKx
)s,x,x(H

−
κ

−−
κ

−
+κ= . 

 (32) 
 
We get from [4], that 
 

2
0( )2

0 0 4
0

( )( , , ) 1
22

x X
tKx x xh x x t e

tt t x
κ

κπκ

−
−⎡ ⎤−

= − +⎢ ⎥
⎣ ⎦

 

2
0 0 0
2

( ) ( )exp
42

Kx x x x x
tx t t κκπ

⎡ ⎤− −
−⎢ ⎥
⎣ ⎦

, x>x0, (33) 

 
and  
 

2
0

0
0

( )( , , ) exp
4

x xxh x x t
tKx t

κ
κπ

∗ ⎡ ⎤−
= − −⎢ ⎥

⎣ ⎦
 

2

0

0
2

0
2

2 exp 1 u

x x t
xt

x t e du
x xK x κ

κ

κ κ
π

∞
−

−
+

⎛ ⎞− +⎜ ⎟
⎝ ⎠ ∫ , xx0 ≥  (34) 

 
hold. By the aid of (34) we obtain the corresponding 
integral equation related to the heat flux. 
 

We have by (32), that 
 

0

00 x
KsK)s,x,x(H +

κ
=  (35) 

 
holds. By taking into account (13) 
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0 0 0
0

0 0
0

( , ) ( ) ( , )

( ) ( )

s KJ x s K x s x s
x

s KK x s x s
xs

κ

κ

= Θ + Θ =

Θ + Θ
 (36) 

 
will be obtained. Finally, by an inverse Laplace 
transformation we get the formula 
 

∫ ϑ+τ
τ−

τ∂
τϑ∂

πκ
=

t

0
0

0

0

0 )t,x(
x
Kd

t

),x(
K)t,x(j  (37) 

for every inner point x0 of the domain. 
 

Moreover, by (24), (26) 
 

0 0 0
0 3

0 2

( , ) ( , ) ( , )1( , )
2

( )

tx t x t xKj x t d
t t

ϑ ϑ ϑ τ τ
πκ τ

⎡ ⎤
−⎢ ⎥= + +⎢ ⎥
−⎢ ⎥⎣ ⎦

∫  

0
0

( , )K x t
x
ϑ   (38) 

holds. Similarly we obtain, that if (a,t) is absolutely 
continuous, then the validity of (38) holds true also 
for the limit point x0=a. 
 
 
2.3 The sphere 

sh
( , ) ,

s x
f x s

x
κ=  (39) 

 
and 
 

0

0
2

0

sh ch
( , , ) .

sh

s s sKx x x x
H x x s

sx x

κ κ κ

κ

⎛ ⎞
−⎜ ⎟

⎝ ⎠=   (40) 

 
The case x=0 can be excluded from the discussion, 
since the heat flux equals to zero for x=0. (40) has 
no inverse for x≥ x0 since 0Hlim

s
≠

∞→
. The inverse 

of (40) exists for x<x0. Applying 
 

0
0

1 2
2

0
1 ,

s xs x
e e

ν
κ

κ

ν

− −∞−

=

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (41) 

 
we have  
 

( )[ ]
⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−ν+

κ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
κ

−= ∑
∞

=ν

xx21sexpxs1
x
xK)s,x,x(H 0

0
2
0

0

 

( )[ ]
⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ν+

κ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
κ

+− ∑
∞

=ν

xx21sexpxs1 0
0

. (42) 

By the application of a theorem of Doetsch [7] 
(page 206) it is easily seen that the term by term 
inversion (42) is admissible. 
 
So applying [4] we get 
 

( ) ( ) 2
0

2 1 2
00 4

0
0

1 2
( , , ) 1

22

x x
t

x xKxh x x t e
txt t

ν
κ

ν

ν
κπκ

⎡ + − ⎤⎣ ⎦∞ −

=

⎡ ⎛ ⎞⎡ ⎤+ −− ⎣ ⎦⎢ ⎜ ⎟= − +
⎢ ⎜ ⎟

⎝ ⎠⎣
∑

 
( ) ( ) 2

01 2
0 4

0

1 2
1

2

x x
t

x x
e

t

ν
κ

ν

ν
κ

⎡ + + ⎤⎣ ⎦∞ −

=

⎤⎛ ⎞⎡ ⎤+ +⎣ ⎦ ⎥+ −⎜ ⎟
⎜ ⎟ ⎥⎝ ⎠ ⎦

∑  

 
( ) 2

01 2
0 4

02
0
((1 2 ) )

2

x x
tKx x x e

x t t

ν
κ

ν

ν
πκ

⎡ + + ⎤⎣ ⎦∞ −

=

⎡
⎢− + + −
⎢⎣
∑

 
( ) 2

01 2
4

0
0
((1 2 ) )

x x
tx x e

ν
κ

ν

ν
⎡ + − ⎤⎣ ⎦∞ −

=

⎤
⎥− + −
⎥⎦

∑ . (43) 

 
For 0xx ≥  we apply Heaviside's Expansion 
Theorem and obtain 
 

∑
∞

=

κ
α

−
∗

α

ακ−
=

0n

t2x

2
n

n

0
n

0

0 e
sin

x
xsin

Kx
2)t,x,x(h , 0x,0t 0 ≠≥ ,  

  (44) 
 
(see Carslaw-Jaeger [1] ). I here nα  denotes the n-
th positive root of the equation 
 

α=α tg . (45) 
 
Important special cases: 
 

,0xx 0 ≠=   ∑
∞

=

κ
α

−
∗ κ−

=
1n

t
2x

2
n

0

00 e
Kx

2)t,x,x(h , (46) 

     t>0 

,0x0 =   ∑
∞

=

κ
α

−

∗

α
ακ

−=
1n n

t
2x

2
n

n

sin
e

Kx
2)t,0,x(h .  (47) 

 
Let x=x0 0≠ . The explicit form of the heat flux can 
be obtained in the following way. By (40) we have 
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0

0

0
00

xssh

xsch

k
sK

x
K)s,x,x(H

κ

κ−=   (48) 

 
and  
 

=
−

+
κ

−=
κ

−

κ
−

0xs2

0xs2

0

00

e1

e1sK
x
K)s,x,x(H  

 

=⎟
⎠
⎞

⎜
⎝
⎛ +

κ
−= ∑

∞

=ν

κ
ν−

κ
−

0

0xs20xs2

0

ee1sK
x
K  

( )
=

κ
−

κ
−

κ
−= ∑∑

∞

=ν

κ
+ν−∞

=ν

κ
ν−

0

0xs12

1

0xs2

0

esKesKsK
x
K  

∑
∞

=ν

κ
ν−

κ
−

κ
−=

1

0xs2

0

esK2sK
x
K   . (49) 

 
(13) gives 
 

0 0

0 0 0
0

2 ( , )

1

( , ) ( , ) ( , )

2 .
s x x s

K sJ x s x s K x s
x

sK e
ν

κ

ν

κ

κ

∞ − Θ

=

= Θ − Θ −

∑

  (50) 

 
Taking into account (36), (38) and applying [4], we 
obtain by the application of a Laplace invertation 
the formula 
 

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
τ

τ−

τϑ−ϑ
+

ϑ
πκ

−
ϑ

= ∫
t

0 2
3

000

0

0
0 d

)t(

),x()t,x(
2
1

t
)t,x(K

x
)t,x(K)t,x(j

 

∑
∞

=ν

κ

ν
−

⎟
⎠
⎞

⎜
⎝
⎛ −

κ
ν

πκ
∗ϑ−

1

2

0

2

t

2
0x2

0 1
t
x2e

t
1

t
K)t,x(  (51) 

 
provided that either x0 is an inner point of I or x0=a 
and )t,a(ϑ  is absolutely continuous. (We denoted 
here the convolution by * 
 
In other form 
 

2 2 2 2
0 0

1
2

0
0 01

0 2

2
1

1

( , ) ( , )( , ) ( , )

1 .
x x
t t

K x t K x tj x t x t
x

t

K e
t t

ν ν
κ κ

ν

ϑ ϑ ϑ
κ

πκ

⎛ ⎞
∞ − −⎜ ⎟⎜ ⎟

⎝ ⎠

=

∂
= − − ∗

∂

∑

 (52) 

 

2.4 The region bounded internally by an 
infinite circular cylinder 
We have 
 

,xsK)s,x(f 0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

=   (53) 

 
where K0 denotes the modified Bessel function of 
the second kind of order zero. So it is 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

κ
=

00

1

0

xsK

xsK
sKs,x,xH ,  (54) 

 
where K1 denotes the modified first order Bessel 
function of the second kind. From the asymptotic 
expansion of the Bessel functions it follows that 
 

( )x0xs
0

00

1

e
x
x~

xsK

xsK
−

κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

, (55) 

 
holds for ∞→s . 

If 0xx ≤  then ∞=
∞→s

lim  and (54) has no 

inverse Laplace transform. We show that (54) has 
the inverse for x>x0 and we determine this. 

Eq. (54) has the following properties for x > 
x0. Let γ > 0 be arbitrary. Then 
1. )s,x,x(H 0  is analytic in the half plane Re γ≥s . 

2. ( )∫
∞+γ

∞−γ

i

i
0 dss,x,xH <∞ . (56) 

3. In the half plane Re γ≥s  )s,x,x(H 0  tends 

uniformly to zero with respect to arg s if ∞→s . 
Then an easy application of a theorem in Doetsch 
[3] (page 236) or Berg [8] (page 27) shows that 

)s,x,x(H 0  has its inverse in the above half plane 
and 

( ) ( ) dses,x,xH
i2

1t,x,xh st

0

i

i
0 ∫

∞+γ

∞−γπ
= ,  (57) 
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moreover, )t,x,x(h 0  is a continuous function of t 
and )0,x,x(h 0 . Applying the Fourier-Mellin 
inversion integral 
 

( ) λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ
λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ
λ

κ
λ

π
= ∫

∞+γ

∞−γ

λ d
xK

xK
e

i2
Kt,x,xh

00

1i

i

t

0 , (58) 

 
The integrand has a branch point in 0=λ , so we 
choose the following contour on the complex plane 
(see fig. 2.). 

 
Fig. 2 Applying of Fourier-Mellin inversion integral 

on the complex plane 
 

By omitting the details, the evaluation of the 
inversion integral above gives the following results. 
 

( ) 2 2
0

0

2, , u tKh x x t e uκκ
π

∞
−= ∫   

( ) ( ) ( ) ( )
( ) ( )

1 0 0 1 0 0
2 2
0 0 0 0

J xu Y x u Y xu J x u
du

J x u Y x u
−

×
+

, t>0, 

 
( ) 0t,x,xh 0 = .  (59) 

 
Here J0, Y0 denote the nullth order Bessel functions 
of the first and second kind, J1, Y1 denote the first 
order Bessel functions of the first and second kind, 
respectively. 

Finally let 0xx ≤ . If x < x0, then the above 

properties 1,2,3 are satisfied for the function 
H
1

 

However, the inverse of 
H
1

 also exists for x = x0 

(see the procedure in Carslaw-Jaeger [1] page 388). 
The following results are obtained: 

 

( ) 2

0
0

2, , u th x x t e
K

κκ
π

∞
⊗ −= ∫  

( ) ( ) ( ) ( )
( ) ( )

1 0 0 1 0 0
2 2

1 1

J xu Y x u Y xu J x u
du

J xu Y xu
−
+

, t>0, (60) 

 
( ) 00,x,xh 0 =⊗ .  (61) 

 
Forx=x0 
 

( ) ∞=⊗ 0,x,xh 00   (62) 
 

( )0 0, ,h x x t⊗ =  

( ) ( )

2

2 2 2
0 0 1 0 1 0

4 ,
u te du

K x u J x u Y x u

κκ
π

∞ −

⎡ ⎤+⎣ ⎦
∫  t>0, (63) 

 
which follows from, (60) by the application of the 
relation 
 

( ) ( ) ( ) ( )
z

2zYzJzYzJ 1001 π
=− . (64) 

 
Goldstein [10] proves, that the inverse of 
 

( )λμ

α sKs  (65) 
exists and can be represented by the aid of 

Whittaker functions. So, for 
2
1

=α , 1=μ , our 

result can be considered as a generalisation of [10]. 
 
 
2.5 The infinite circular cylinder 
We have 

( ) ,
xsI

xsI
sKs,x,xH

0

1

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

κ
−=  (66) 

 
where I0, I1 denote the modified nullth, and first 
order Bessel functions of the first kind, respectively. 
By the application of the inversion formula we 
obtain the following: 
Let x<x0, then 
 

( ) ( )
( ) ,xJ

xJe
x

K2t,x,xh
0n1

n1t2
n

1n

2

n

0

0 α
α

α
κ

= κα−
∞

=
∑  t>0,  (67) 
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( )0, ,0 0,h x x =  (68) 
 
where nα  denote the positive roots of the equation 
 

( )0 0 0.J xα =  (69) 
 
Let x > x0, then 
 

( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
β

+
κ

−= ∑
∞

=

κβ−∗

1n

t2
n

n0

0n0
0 e

xJ
xJ1

Kx
2tx,xh , t>0,  

  (70) 
( ) 00,x,xh 0 =⊗ . (71) 

 
Let x = x0, then 
 

( ) −∞=⊗ 0,x,xh 0 , (72) 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ +

κ
−= ∑

∞

=

κβ−∗

1n

t2
n

0

00 e1
Kx
2tx,xh , t>0,  (73) 

where nβ  denote the positive roots of the equation 
 

( )1 0J xβ = . (74) 
 
The following statement holds: 
Statement. Let us consider the cases A, B, D. The 
heat flux can be represented as a convolution 
integral is and only if x > x0. For 0xx ≤  the heat 
flux satisfied a convolution type integral equation of 
the first kind. Let us consider the cases C, E. The 
heat flux can be represented as a convolution 
integral if and only if 0x x< . For 0x x≥ , the heat 
flux satisfies a convolution type integral equation of 
the first kind. 

Moreover, if 0x x= , then the solutions of 
the corresponding integral equations can be given in 
explicit forms in the cases A, B, C provided that the 
point x0 is either an inner point of the domain I, or is 
the limit point of I, where the temperature is 
absolutely continuous. 
 
Remarks. 1.) In the discussion of the case of a 
region bounded internally by an infinite circular 
cylinder, we obtained 

( ) ( ).sx
xsK

xsK
sKs,xJ 0

00

1

Θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

κ

κ
=   (75) 

 
Garbai [11] gets an integral equation for the heat 
flux as follows. Since 
 

( ) ( ).s,xxsKsKs,xJxsK 0100 Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κκ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ

 
(76) 

 
By inverting both sides of this equation and 
applying the convolution theorem of the Laplace 
transformation, the integral equation. 

( )
( )

( )τϑ
κ

=τ
τ−

τ ∫∫
τ−κ

−

,x
2
Kxd

t
e,xj 0

t

0

t4

2
0x

t

0

( )

( ) ,d
t
e

2

t4

2
0x

τ
τ−

τ−κ
−

  (77) 

 
is obtained. (77) holds for every pair (x, x0) and its 
kernel function is more simpler than the 
corresponding ones given by (60), (63). The 
disadvantage of (77) lies in the fact that there occurs 
a convolution on the right-hand side of it. 

It is surprising that (77) has no analogue in 
the case of the infinite circular cylinder. 

2.) Our results can be well applied in the 
practice, if the heat flux has a convolutional 
representation. Then by measuring the temperature 
in discrete time intervals, the convolution can be 
evaluated by known numerical methods. On the 
other hand, there are numerical methods also for 
solving convolutional integral equations, we shall 
deal with these methods in a following paper. 

3.) The condition of the absolute continuity 
of the temperature in the limit points is a sufficient 
condition, which holds in the practice. It is however 
not necessary. 
 
 
3 Harmonic processes 
It follows from the theory of the linear systems, that 
the results related to the harmonic processes are 
simple consequences of our results discussed above 
(see [2], [3]). If we substitute ω= is  in (13), where 
ω  is the angular frequency of the harmonic 
oscillation, and replace the Laplace transforms by 
the notations ( )ωΘ i,x , ( )ωi,xJ  then the equation 
 
( ) ( ) ( )ωΘω=ω i,xi,x,xHi,xJ 00  (78) 
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will be obtained. ( )ωΘ i,x , ( )ωi,xJ  are the 
complex amplitudes of the harmonic input 
(temperature), and harmonic output (heat flux), 
respectively. ( )ωi,x,xH 0  is the complex transfer 
characteristics of the system. Equation (78) 
describes this transmission system, the scheme of 
which is illustrated in figure 3. 
 

 
Fig. 3. Transmission system model of heat flux for 

harmonic processes 
 

Practically, the most important quantity is 
the amplitude characteristics. ( )ω,x,xA 0  being the 
absolute value of the transfer characteristics 
( )ωi,x,xH 0 . 

The amplitude characteristics describes the 
frequence dependency of the quotient of the 
amplitudes of the output and input (reasonance 
curve). The results are presented on the basic 
geometrical structures in the article [15]. 
 
 
4 Conclusion 
The system theoretical treatment given in this paper 
presents a new approach of the heat flux problem 
and the results can be well applied in the 
engineering practice. In those simpler cases when 
the heat flux can he given explicitly lay 
convolutional or other type of integrals, these 
integrals may be computed by the application of 
well-known numerical techniques. On the other 
hand, in the cases when the determination of the 
heat flux is reduced to the solution of convolutional 
integral equations, simple approximate methods are 
available in the mathematical literature. 
 
 
Symbols: 
 c specific heat, 
 j heat flux, 
 s complex variable, 
 t time, 
 K heat conduction factor, 
 ρ density, 
 ϑ  temperature, 
 Τ time 
 κ thermal diffusivity 
 J Laplace transformed 
 Δ Laplace operator 
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