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Abstract: - In the present paper, a LES model, developed for the simulation of turbulent channel flow (in which the 

generalized SGS stress tensor is related to the SGS turbulent kinetic energy and SGS viscous dissipation), will be extended to 

include the simulation of re-suspension of solid particles from an erodible bed. The solid particle concentration fields are 

simulated by numerical integration of the spatially filtered equation of concentration. In this equation the first order tensor 

(produced by the second order generalized central moment relative to the correlation between velocity and concentration) is 

related to the gradient of the resolved concentration by means a second order tensor: the coefficient that is present in this 

closure relation is calculated by a dynamic procedure. 
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1   Introduction 
Recently, the large eddy simulation technique (LES) has 

been shown to be a promising approach for computational 

of turbulent transport and dispersion of a passive scalar [1]. 

The underlying reason for this success is due to the fact that 

in LES the large scale turbulent mixing is carried out by the 

resolved field and is not relinquished to a model. 

To predict the subgrid-scale variance of a conserved scalar, 

Cook and Riley [2] proposed a scale similarity model. The 

model has since been used in a LES of nonpremixed 

combustion in homogeneous isotropic turbulence [3] and a 

priori tested in a turbulent mixing layer [4]. 

Pierce and Moin emphasized that the major drawback of 

this approach is that it requires input from the user in the 

form of a model coefficient. Furthermore, there is no reason 

to expect that a "universal value" for the model coefficient 

exists, except within a well developed inertial subrange. In 

general, the coefficient could vary with flow type, 

characteristics of the grid and test filters, Reynolds 

numbers, etc. [1]. 

Pierce and Moin overcame the mentioned drawbacks:  they 

applied a dynamic procedure to obtain the model coefficient 

that appears in the closure relation for the subgrid variance 

of a conservative scalar. 

In the present work, a LES model [5] developed for the 

simulation of turbulent channel flow (in which the 

generalized SGS stress tensor is related to the SGS turbulent 

kinetic energy and SGS viscous dissipation) will be 

extended to include the simulation of re-suspension of solid 

particle from an erodible bed in a channel flow. 

The solid particle concentration field is simulated by 

numerical integration of the spatially filtered equation of 

concentration. 

In this equation the first order tensor (produced by the 

second order generalized central moment relative to 

velocity and concentration) is related to the gradient of the 

resolved concentration by means a second order tensor that 

takes into account the local non uniform characteristics of 

the spatial filters.  

 The coefficient, that is present in this closure relation, is 

calculated by a dynamic procedure. 

 

 

2   The mathematical model 
The unsteady  three-dimensional turbulent velocity field is 

simulated by numerical integration of the spatially filtered 

momentum equation. 

The application of the spatial filter operator (indicated by 

the overbar ) to the Navier Stokes equations takes to the 

filtered equations: 
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In the relation (2) there is the generalized SGS turbulent 

stress tensor τ ij , that is given by: 

i jij i ju u u uτ = −     (3) 

The SGS turbulent stress tensor can be split into three 

tensors: 

τ = + +m m m

ij ij ij ijL C R   

called, respectively, modified Leonard tensor, modified 

cross tensor and modified Reynolds tensor and defined as 

follows [6]: 

( , )τ= = −m
i j i j i jijL u u u u u u    (4) 

' ' ' ' ' '( , ) ( , )τ τ= + = − + −m
i j i i j jij j i j j i iC u u u u u u u u u u u u  (5) 
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' ' ' ' ' '( , )τ= = −m

ij i j i j i jR u u u u u u   (6) 

In this paper the closure relation [5] for the generalized SGS 

turbulent stress tensor τ ij  is given by: 
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where E is the generalized SGS turbulent kinetic energy 

which is calculated by numerically integrating its balance 

equation. The viscous dissipation ε  of the generalized SGS 
turbulent kinetic energy is calculated by numerical 

integrating the ε  balance equation; the closure coefficients 
that appears in the closure relation for the unknown tensors 

in the E balance equation and in the ε  balance equation are  
dynamically calculated by means of the Germano identities. 

The filtered equation of the concentration of suspended 

solids is given by: 

( ) 0
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+ + − =
∂ ∂ ∂

i
i i
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u CC
u C u C

t x x
         (8) 

where C  represents the spatially filtered concentration 

field.  

The last  term of  Equation (8) is a first-order tensor given 

by the generalized central moment relative to the velocity 

vector and the concentration and is defined as follows: 

( ) ( )i i i ia u ,C u C u Cτ= = −                     (9) 

The above tensor is split in terms of generalized central 

moments: 
C C C

i i i ia L C R= + +                                               (10) 

where:                

( )C
i i i iL u ,C uC u Cτ= = −                                   (11)   

( ) ( ) ( )τ τ= + = − + −C ' ' ' ' ' '

i i i i i iC u ,C u ,C u C u C u C u C  (12) 

( )C ' ' ' ' ' '
i i i iR u ,C uC u Cτ= = −                                  (13) 

The sum of the second and third term on the right hand side 

of Equation (10) represents an unknown first-order tensor. 

In this paper a new closure relation for this unknown tensor 

is proposed. 

The closure relation between the sum of the unknown 

unresolved tensors +C C

i iC R  and the filtered concentration is 

given by: 
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where ν C
ij  represents a second order tensor that is 

proportional to the turbulence subgrid velocity scale and the 

turbulence subgrid length scale. This tensor is defined by: 
C
ij c ijc Edν =

     (15) 

In order to take into account the local non uniform 

characteristics of the spatial filters, the second-order tensor 

mnd  is defined as: 

( )
1

3
1 2 3/= ∆ ∆ ∆ ∆ ∆mn m nd    (16) 

in which ∆i is the vector of which the components are the 

filter dimensions in the three coordinate directions.  

By introducing Eq. (15) in (14), the following closure 

relation is obtained: 
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Let ( )±.  be the symbol that indicates the filter operation at 
the test level and let ( )iT u ,C  be the generalized central 

moment at the test level related to the velocity vector and 

the concentration, the following first-order tensor is defined 

( ) ² %°= = − ii i iA T u ,C u C u C   (18) 

which in terms of generalized central moments can be split 

as: 

= + +
T T TC C C

i i i iA L C R    (19) 

where:          
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The sum of the last two terms on the right hand side of  

Equation (19) is an unknown quantity that is modeled with 

an expression analogous to Equation (17):  
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The calculation of the coefficient  
c
c  is carried out by using 

the following identity  

° ² °°− = −i ii iA a u C u C    (23) 

Equation (23), with the use of the closure relations 

expressed by Equations (17) and (22), becomes 
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where TE indicates the SGS kinetic energy relative to the  

test-filter and T
ind  indicates the second-order tensor 

associated with the turbulence  length scales  relative to the  

test-filter. 

Equation (24) allows the dynamic calculation of the 

coefficient  
c
c . 

The numerical integration of Equation (8) for the simulation 

of the filtered concentration field of suspended solids may 

be carried out once the boundary conditions have been 

defined. 

The plane, in proximity to the bottom, which defines the 

boundary for the concentration field is placed immediately 

above the viscous sublayer, inside the buffer layer: the 
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“Reference Concentration”, rC , is imposed on this plane as 

a boundary condition. 

This reference concentration is calculated as a function of  

the resolved tangential stress at the bottom and the critical 

stress representing the threshold beyond which the 

movement of solid particles from the bottom is produced. 

In particular, in the proposed model the value of the local 

and instantaneous reference concentration, rC , is related to 

the resolved velocity field at the bottom by means of the 

formula proposed by Van Rijn [7]. The aforesaid Van Rijn 

formula reads: 
,

p

r ,
*

D T
C ,

a D

  
=   

  

1 5

0 3
0 015     (25) 

in which 

a: distance from the bottom at which rC  is calculated 

pD : diameter of the solid particles 

/
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and the quantity 
2

*u  which appears in Equation (27) is 

linked to the tangential stress at the bottom, fτ , produced at 

each time step by the tangential resolved velocity 

component at the bottom, u , by means of the following 

relation: 

2

*  =
τ

ν
ρ

∂
=

∂
f u

u
y
     (28) 

 

 

3  Results and discussion 
The symbol .  represents the Reynolds average and the 

friction velocity based Reynolds number is given by: 

τ ν= *Re u L /  

The proposed model is used to simulate the phenomenon of 

the re-suspension (from the bottom) of solid particles in a 

channel flow. 

The values of the diameter and the relative density of the 

solid particles are, respectively, equal to 200 µm and 1.40. 
The "large eddy simulation" of the velocity and 

concentration fields, in a channel flow, is performed at 

Reynolds number Reτ  = 395.  

In Figures 1-5 a sequence of longitudinal sections of 

instantaneous solid particles concentration fields (relative to 

the transitory interval during which the phenomenon of the 

re-suspension begins and develops from the bottom and the 

transport of solid particles develops inside the channel) is 

shown. The mean flow is directed towards the growing x 

axis. Periodic boundary conditions on the velocity and 

concentration fields in the streamwise direction allow the 

numerical simulation of the concentration field which 

occurs in a channel of infinite length having an erodible 

particle bed.  

 
Figure 1. Longitudinal section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 

Figure 1 shows the filtered concentration field (at an instant 

of the numerical simulation): from the figure it is possible to 

deduce how some vortices (characterized by a high content 

of the turbulent kinetic energy) produce instant values of 

friction velocity that is able to start the re-suspension of the 

solid particles. 

 
Figure 2. Longitudinal section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 

In Figures 2 it is shown how the concentration field values 

change over time: these variations are the result of the 

streamwise movement of the aforesaid vortices: the 

increases of the instantaneous friction velocity (associated 

to the vortices) and the streamwise movement of the 

vortices, with high value of kinetic energy, produce an 

increase of the value of the reference concentration and a 

streamwise movement of the bottom regions characterized 

by the re-suspension of the solid particles.  

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp384-388)



 
Figure 3. Longitudinal section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 
Figure 4. Longitudinal section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 

In figure 3 it is shown the filtered concentrations field at a 

successive step of the simulation: from the figure its 

possible to see that the solid particle (that have been 

suspended from the bottom) come to the central region of 

the channel and are transported downstream by the high 

velocity of the current. 

Figure 6 shows a spanwise section of the filtered 

concentration field (at an instant of the numerical 

simulation).  

After a high number of iterations a statistically steady 

condition for both the solid and the liquid phase is verified. 

By applying a Reynolds average to the spatially filtered 

concentration values (for a time higher than the integral 

time scale of turbulence) a statistically steady vertical 

concentration profile of the solids in suspension is obtained:  

= ∫
T

C(y) C(y,t)dt
0

0

      (29) 

where y is the vertical coordinate and T
0
 the time  over 

which the average is calculated. 
 

 
Figure 5. Longitudinal section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 

In figure 5 it is shown the fully developed resolved 

concentration field. 

 
Figure 6. Spanwise section of the filtered concentration 

field. Channel flow, Reτ  = 395. 

 

The vertical concentration profile, obtained by averaging 

(over time) the spatially filtered concentration values 

(calculated by means of the proposed numerical model), are 

compared with the theoretical profile of the Reynolds 

averaged concentration values in the same average 

hydrodynamic conditions and for the same particle 

characteristics. 

The theoretical profile of the Reynolds averaged 

concentration values is calculated by adopting the following 

Van Rijn's formula: 

( )
( )

 −
=  

−  

'Z

r

a H yC

C y H a
    (30) 
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τ= +'Z Z              (31) 
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ω
0
= terminal velocity    (35)  

k = Von Karman constant  (36) 

and rC is the reference concentration calculated by means 

of Equation (25) in which  
2 2

* *

2
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u u
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−
=    (37) 

and the parameter a , that appears in the Equation (25) and 
(30), is assumed equal to the distance from the bottom 

where the plane on which the Reference Concentration is 

assigned. In this case a  is assumed equal to 12 wall units, 
where the wall unit 

ν
+ = *y u

y     (38) 

is calculated using the friction velocity obtained with the 

Reynolds number of the numerical simulation of the 

channel flow: 

τ ν=*

Re
u

L
    (39) 

 

 
Figure 7. Comparison between Van Rijn's formula values 

and Reynolds averaged LES values. 

 

In Figure 7 the vertical concentration profile, obtained by 

averaging (over time) the spatially filtered concentration 

values (calculated by means of the proposed numerical 

model), is compared with the vertical concentration profile 

calculated theoretically by means of Van Rijn's formula.  

 

 

4  Conclusions 
In the present paper, a LES model, developed for the 

simulation of turbulent channel flow (in which the 

generalized SGS stress tensor is related to the SGS turbulent 

kinetic energy and SGS viscous dissipation), is extended to 

include the simulation of re-suspension of solid particle 

from an erodible bed. The solid particle concentration field 

is simulated by numerical integration of the spatially filtered 

equation of concentration. In this equation the first order 

tensor (produced by the second order generalized central 

moment relative to the correlation between velocity and 

concentration) is related to the gradient of the resolved 

concentration by means a second order tensor: the 

coefficient that is present in this closure relation is 

calculated by a dynamic procedure. 

The proposed model is used to simulate the phenomenon of 

the re-suspension (from the bottom) of solid particles in a 

channel flow. 

The values of the diameter and the relative density of the 

solid particles are, respectively, equal to 200 µm and 1.40. 
The "large eddy simulation" of the velocity and 

concentration fields in a channel flow is performed at 

Reτ = 395 . 
The vertical concentration profile, obtained by averaging 

(over time) the spatially filtered concentration values 

(calculated by means of the proposed numerical model), are 

in agreement with the theoretical data. 
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