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Abstract: - This paper presents a new method for the determination of the transient heat conducting 
processes occurring in composite systems of different heat conducting layers. The problems of this 
type are treated by the aid of the Laplace transformation in the literature [3], [4]. The classical 
inversion methods are no applicable for N > 2 [1]. This new method is based on the Papoulis-Berg 
inversion method [2], [5]. The most advantage of the method lies in the fact that it is applicable for 
linear composite heat conducting systems of any number of layers, for constant heat conduction 
coefficient. 
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1 Introduction 
In technical practice one often encounters 
transient heat conduction problems in 
composite systems consisting of solid layers, 
e.g., walls of buildings, walls of furnaces, heat 
insulation of pipelines, etc. 

Investigating these involves solving 
the simultaneous system of differential 
equations 
 

t
i

i
i ∂

∂
=Δ

ϑ
κ

ϑ 1
, i=1, 2, …, N.               (1) 

 
under prescribed initial and boundary 
conditions, where: 
 

iϑ  temperature in the i-th heat conductor; Δ 
the Laplace-operator; N the total number of 

layers in the system; t time;  Ki the thermal 
diffusivity of the i-th substance. 

If we assume that the temperature 
depends only one space coordinate, x, in 
addition to time, and that the temperature of 
the system at the time t=0 was zero, then 
problems of the type indicated above can be 
redefined mathematically in the following 
way: 

From among the solutions of the 
system of heat equations 
 

( )
t

1t,x i

i
i ∂

ϑ∂
κ

=ϑΔ ,   ∞<<<− i1i lxl ,   

i=1, 2, …, N, t > 0.                            (2) 
 
we are to determine the one that satisfies the 
zero initial condition at the time t=0 and the 
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continuity conditions at the separating surfaces 
(or points) with co-ordinates li 
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= ∂
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−=
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−  

i=1, 2, …, N-1,          
 
where Ki is the thermal conductivity of the i-th 
conductor and the boundary conditions 
applicable to the system [3]. 

The simplest composite systems in 
practice are the following: 
 
I. Composite plane walls of N layers. 
II . Composite hollow spheres of N layers . 
III. Composite hollow circular cylinders of N 
layers. 
 

The following figure indicates the 
domain x for each of the three cases. 
 

 
Fig. 1 

 
We offer solutions for these three 

basic problems in our paper. In the first 
structure we choose lo =0, but in structures II. 
and III., lo=a>0, as we do not consider the 
process in the interior of the system in the 
domain ( olx0 ≤≤ ). Temperatures will only 
be considered in the points li dividing the 
individual conductors, at the beginning of the 
system (lo) and at its end (lN), which are 
important special cases in technical practice, 
and whose investigation, as we are going to 
see, makes a clear system-theoretic approach 
possible. 

Problems of the types shown above 
are discussed in the literature using the method 
of Laplace transformation [3], [4]. However, 
even in the case N=2, the Laplace transforms 
of the temperatures become complex 
expressions whose inversion - with the 

exception of some special cases - poses 
insurmountable difficulties. This fact was also 
stated by Jaeger in [1]. 

In this paper we are going to present 
the Papoulis-Berg inversion method [2], [5] in 
the system theoretic investigation of heat 
conduction problems of the type shown above. 
The greatest advantage of this method is that it 
is fairly easy to apply for arbitrarily large 
values of N, so the number of heat conducting 
layers with different physical properties is not 
limited. 

The introduced method provides an 
interesting alternative on describing of the 
transient heat conduction and temperature field 
in multi-layered composite bodies. 

 
 
2 Determining the Laplace 
transform of temperatures 
After applying the Laplace transformation to 
equation (1), considering the zero initial 
condition, we obtain the following 
transformed expression 
 

( ) ( )s,xqs,x i
2
ii Θ=ΔΘ ,  

i
i
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κ

,  

 i=1, 2, …, N.                              (3) 
 
In the special structures investigated by us: 
 
I. Composite plane walls of N layers: 
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II. Composite hollow spheres of N layers: 
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III. Composite hollow cylinders of N layers: 
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[3]. 
 

Let use introduce the Laplace 
transforms of the heat fluxes  
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For the sake of simplicity, let us use the 
notations ( ) ( ) ( ) ( )iiii lJ,l,t,lj,t,l Θϑ  for the 
temperatures, heat fluxes and their Laplace 
transforms in the points li. It can be 
demonstrated that the relationship between the 
transforms of the temperatures and heat fluxes 
occurring at the input with coordinate li-1 and 
exit with coordinate li of the i-th heat 
conductor can be established using the so-
called transfer matrix 
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of the i-th layer in the following form: 
 

( )
( )

( ) ( )
( ) ( )

( )
( ) ⎟⎟⎠

⎞
⎜⎜
⎝

⎛Θ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛Θ

−

−

1i

1i

ii

ii

i

i

lJ
l

sDsC
sBsA

lJ
l

     

i=1, 2, …, N.                               (8) 
 

For structure I. the entries of the 
transfer matrix can be fond in [3]. For 
structures II. and III., we have computed the 
values, and we will get back to them later. 

Let us now consider the system 
consisting of N heat conducting layers. Then 
the following matrix relationship prevails 
between the temperatures and heat fluxes at 
the input of the system and at the exit of the i-
th heat conductor: 
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where 
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and ( ) ( )sAsH 11 = , and in particular, for i=N 
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which describes the operator relationship 
between the input and exit of the system of 
heat conductors, and which can be 
schematically represented as a linear 
transmission system as follows: 

Fig. 2 
 
It is apparent that the combined 

transfer matrix of the two systems is equal to 
the product of the two transfer matrices. Two 
boundary conditions must be given in order to 
solve the problem. On of the two pertains to 
the beginning (input) of the system of heat 
conductors, the other to the end (output). If 
two of the operators ( ) ( ) ( ) ( ),lJ,lJ,l,l N0N0 ΘΘ  
are known, than the other two can be 
determined from (11). 

Now we are going to write the Laplace 
transforms of the temperature we are most 
interested in far the most important boundary 
condition occurring in technical practice. 
 
1. Temperature is given at both ends of the 
system. Then 

( ) ( ) ( )
N

i
N

N

NiNi
0i B

Bl
B

ABBAll Θ+
−

Θ=Θ ,     

i=1, 2, …, N.                                 (12) 
 
2. Heat flux is given at both ends of the 
system. Then from (1.9) 
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N

N

n

N
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C
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( ) ( ) ( )
N

i
N

N

NiNi
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C

DACBlJl +
−

=Θ ,     

i=1, 2, …, N.                                 (13) 
 
3. Temperature is given at l0, the input of the 
system, and the heat flux is given at lN, the 
output. 
Similarly to the preceding cases, 
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i=1, 2, …, N.                                 (14) 
 

The case involving the roles of l0 and 
lN reversed can be written analogously. 
 
4. Temperature is given at l0, the input of the 
system, and the heat flux is proportional to the 
temperature at lN, the output. 
 
The latter boundary condition in the form of a 
Laplace transform is (I): 
 
( ) ( )NN llJ Θγ= .       (15) 

 
Then
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NiNiNiNi
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γ

γ
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i=1, 2, …, N.                                 (16) 
 
5. The heat flux is given at l0, the input of the 
system, and the heat flux us proportional to the 
temperature at (lN), the output. 
 
In this case 
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( ) ( ) ( )
NN

NiNiNiNi
0i AC

CBDAABBAlJl
γ−

+−−γ
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Let us now write the entries of the transition 
matrix ( )sAi  for structures I, II and III: 

 
I. Composite plane walls of N layers: 
Then, according to Carslaw-Jaeger [1] 
 

( )
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1
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( ) ( ) i1iiiii qllshqKsC −−−= ,         

i=1, 2, …, N.       (19) 

and                                  ( ) 1sAdet i = , 

 
which implies                 ( ) 1sHdet i = . 

 
II. Composite hollow spheres of N layers: 
 

( )
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Computing the entries of the transfer matrix, 
we obtain 
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We assume that the surrounding temperature is 
zero ( ) 0t,x =ϑ , if x<l0, or x>lN. 
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thus 

( ) 2
i

2
0

i l
lsHdet = ,              i=1, 2, …, N.       (20) 

 
III.  Composite hollow circular cylinders of 
N layers: 
In this case 
 

( ) ( )ii0
1

i lqI=ϕ ,          ( ) ( )ii0
2

i lqK=ϕ . 
 
where I0 and K0 are the Bessel functions of the 
first and second kind, of order 0. The entries of 
the transfer matrix are found to be 
 

( ) ( ) ( ) ( ) ( )[ ],1101101 −−− += iiiiiiiiiii lqIlqKlqKlqIqlsA
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where I1 and K1 are the modified Bessel 
functions of the first and second kind, of order 
one. Furthermore, 
 

i

1i
i l

lAdet −= ,            i=1, 2, …, N, 

consequently             ( )
i

0
i l

lsHdet = . 

 
Now the Laplace transforms of the 

temperatures at the points li can be written 
explicitly with the help of the formulae 
obtained thus far. Unfortunately, owing to the 
products of the function matrices in (20), the 
entries of the matrix ( )sHi  and, consequently, 

the formulae generating transforms of the 
temperatures are so complex even for N>2 that 
inverting them with classical methods is 
practically impossible. 

The following Papoulis-Berg 
inversion method fixes this problem. Next, we 
are going to explain the method briefly, then 
we are going to invert the Laplace transforms 
of the temperatures using the method. 
 
 
3 Applying the Papoulis-Berg 
inversion method to solving the 
heat conduction problem 
Let f(t) be a continuous function of bounded 
variation defined for 0t ≥  and Laplace 
transformable, f(0)=0 and let 
 

( ) ( )∫
∞

−=
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Papoulis [4] obtains the inverse of F(s) 

without applying the Fourier-Mellin inversion 
integral in the following way. 

Let 0s>σ  be an arbitrary positive 
number and let us substitute 
 

( )xcose t =σ−   (23) 
 
into (22). Then by denoting f(t)=g(x) , we 
obtain 
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Let us now define the function g(x) to 

the domain π≤<
π x
2

 by way of the formula 

( ) ( )xgxg −π= . From the theory of Fourier 
series it is known that the function f(t) can be 
expanded into a Fourier series of the form 
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The following formula is easily verified by 
mathematical induction: 
 

( ) ( ) .cos41sin12sin
0

2∑
=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−=+
n

n x
n
n

xxn
ν

ννν

ν
ν

                            (28) 
Substituting this into (27), taking (25) into 
account, we obtain 
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Thereby the inverse Laplace transform of F(s) 
obtained. Indeed, the coefficients cn are easy to 
compute from (29) once F(s) is known, so f(t) 
can be determined from (26) for an arbitrary t. 
For fixed values of t, the speed of convergence 
of (26) depends on the choice of σ , of course. 

Considering that, Berg [5] has 
suggested that, in order to accelerate the 
convergence of (26), one should not use a 
constant value of σ , but rather - given the 
asymptotic relationship between f(t) and F(s) - 
the product σ t should be chosen to be 
constant (i.e., for small values of t, σ  should 
be large and vice versa). From (23) it is 
apparent that the value of x is constant this 
way. Choosing this constant to be the midpoint 

of the basic interval ⎟
⎠
⎞

⎜
⎝
⎛ π

2
,0 , 

4
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following formulae obtain: 
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here ⎥⎦
⎤

⎢⎣
⎡

2
n

 is the least integer of n and t>0. (see 

Berg [5].) 
It is apparent that the time t takes the 

role of the complex variable s in the Laplace 
transform F(s) in the form (30) of the inverse 
transform f(t), meaning that it is to be 
evaluated numerically for arbitrary fixed t. 

Let us now apply formula (30) for 
inverting the Laplace transforms of the 
temperatures determined in the preceding 
section. For the sake of better understanding, 
let us introduce the following notations: 
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Then, on the basis of (30), we obtain the 
following formulae for the individual inverses. 
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The inverse of (13): 
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The inverse of (14): 
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The inverse of (15): 
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The inverse of (16): 
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The inverse of (17): 
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From formulae (17), (19) and (22) it is 
apparent that 
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  (38) 
 
where the quantities Ai-j , Bi-j , Ci-j , Di-j in the 
matrix product on the right-hand side of the 
equation can be obtained from formulae (18), 
(19) or (20), depending on the geometric 
structure being investigated, putting the 

expression ( )ν+ 21
t2
2log

 in the place of s. 

Thus, if we wish to compute the 
temperatures (22), . . . (27) for a fixed time, t> 
0, then we must substitute the numerical 
values of the time t into (28), whereby the 

multiplication of function matrices is reduced 
to the multiplication of numeric matrices. 

This is the main advantage of the 
Papoulis-Berg inversion, which is the 
consequence of the fact that the time t replaces 
the complex variable s in the Laplace 
transform of formula (30). 
 
 
4 Conclusion 
In the paper a mathematical model and 
calculation procedure is presented, which is 
capable of solving transient heat conduction 
problems in multi-layer composite systems. It 
is proved that the procedure makes the 
calculations more effective and quick and may 
substitute the finite difference and finite 
elements methods. The method may be utilised 
well for the calculation of the transient 
temperature field in case building structure 
elements, walls, energetic appliances, 
insulations, furnace walls and district heating 
pipelines. The method is capable of solving 
non-linear heat conduction problems for 
temperature dependent thermal conductivity. 
 
 
Symbols: 
j -- heat flux 
J -- Laplace transformed form of 
the head flux (j) 
K -- thermal conductivity 
s -- complex variable 
t -- time 
x -- space variable 
Δ  -- Laplace operator 
ϑ  -- temperature 
κ  -- thermal diffusivity 
τ  -- time 
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