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Abstract: - In this paper, an irregular-grid finite difference method (IFDM) with the use of Green-Gauss
theorem was developed to numerically deal with problems subject to arbitrary geometrical boundaries. The
focus is to elucidate the principle of IFDM and the numerical procedure to solve partial differential equations.
Attention is paid to the discretization of spatial terms in partial differential format. Totally six types of
discretization schemes are proposed and assessed from points of views of efficiency and accuracy. Theoretical
analyses are conducted with regard to the compactness of stencil and positivity of the coefficients of supporting
nodes. Upon the analyses, two schemes, II and VI, are selected for further study. Scheme II is based on one-
point quadrature rule while scheme VI corresponds to 2-point quadrature rule. Numerical excises by using the
two schemes are carried out to predict the solutions in a square domain that is governed by a Poisson equation.
The effects of irregularity of grids are also studied. Numerical results indicate that the both schemes give
satisfactory prediction. In addition, the scheme VI gives better accuracy, especially on irregular grids, but at
slightly higher cost in computation. Efforts here demonstrate that the proposed IFDM method is good to be
used in numerical simulations with arbitrarily geometrical bounds.
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1. Introduction
Apart from well-known finite element method
(FEM) and finite volume method (FVM), finite
difference method (FDM) is another mesh-based
traditional numerical method widely adopted in
numerical simulations, mainly because it is
straightforward and highly efficient. In
conventional FD methods, single- or multiple-block
structured grids are used. The discretization of
governing equations to structured grids results in a
system of algebraic equations with banded matrix
of coefficients. Quite a number of efficient
numerical methods can be used to quickly get the
solutions to such a system of algebraic equations.
However, it is not trivial process to generate
structured grids for arbitrary geometries, especially
for the topological generation of multiple blocks
[1]. This limits the FDM only for simple

geometries. Besides, in conventional FDM method,
the Jacobian matrix, resulting from the
transformation of governing equations from
physical domain to a computational domain on a
curvilinear coordinate system, is needed to be
predicted. This imposes additional computational
cost and may give more errors in prediction.
Researchers have attempted to overcome these
drawbacks of FDM mentioned above. More
recently, some meshfree methods, which are
implemented on nodes at first place, are developed
for this purpose. A survey paper written by
Babuska et al [2] emphasized on the mathematical
foundation of various meshfree methods. Overview
of computational and implementation issues related
to meshfree methods can be found in monographs
about weak form [3] and strong form [4].



In general, many meshfree methods for the solution
of partial differential equations in weak form are
comprehensively studied. When governing
equations in strong form are adopted, most of these
meshfree methods show notorious stability,
primarily because of the sensitivity of the solution
on the supporting nodes used in discretization.
Besides, due to large overlap in the supporting
domains, discretization schemes are not
conservative. This also imposes the demand of a
great deal of computation.
A new and efficient generalized finite difference
method, irregular-grid finite difference method
(IFDM), developed for the purpose of generality
and efficiency. The IFDM is derived in light of
Green-Gauss theorem rather than Taylor-series
expansion theorem that is usually used in any other
finite difference method. In implementation, since
the governing equations are directly discretized on
the physical domain, the prediction for Jacobian
matrix induced by coordinate transformation is
avoided. In addition, the IFDM can be applied for
arbitrary geometries.
In the following sections, the in-depth description
of solution algorithm of IFDM is given first. The
approximations to gradients (first-order derivative)
and Laplace operator (second-order derivative) of a
scalar are introduced with the IFDM. The focus is
on the analyses of weighting coefficients on a
stencil of supporting nodes. Consequently,
numerical results for a square domain governed by
a Poisson equation are discussed. The
computational efficiency and accuracy of the IFDM
method are addressed. At the end, brief concluding
remarks are given upon current efforts.

2. Solution Algorithm

2.1 Theoretical background
Taylor-series expansion theorem is used to
discretize the derivatives in traditional FD methods.
Comparatively, the IFDM method is derived on the
basis of the Green-Gauss theorem.
For simplicity, let us take a 2-dimension problem
as an example to illustrate the principles of IFDM
method. According to Green-Gauss theorem [5],
for a generic variable U, it holds

UdV Unds
 

  
 (1)

where  is gradient operator, and V represents the
area of gradient smoothing domain of , ds is the

length of domain face and nis the unit normal
vector to the domain face.

Fig. 1 Illustration of gradient smoothing domain
and face vectors (pointing outward)

Mathematically, on a gradient smoothing domain
(GSD) as shaded in Fig. 1, the gradients can be
approximated as

1U Unds


 


 (2)

Similarly, the second-order derivatives (Laplace
operator) can be approximated as

1
( )U n Uds



   
  (3)

As shown in Fig. 1, the grids are used to constitute
gradient smoothing domains which are used for
approximation of derivatives occurring in
governing equations. In current study, two types of
GSD are adopted: one is named median-based GSD
adopted for the approximation of derivatives at any
node of interest. It is formed by connecting relevant
centroids of triangles with midpoints of relevant
edges. The other is just the grid itself that is
employed in some schemes for prediction of
derivatives at any centroid. It is called grid-based
GSD here.

2.2 Discretization of derivatives
Totally six schemes, as summarized in Table 1,
were proposed and studied. For the three basic
schemes, I, III and V, they differ with one another
in the order of quadrature adopted for integral
approximation and the approximation of gradients
at centroids. In one-point based schemes, the
integration over any domain face is approximated
with rectangular rule by using the values at mid-
point of any edge. In two-point based schemes,
trapezoidal rule based on values at midpoints of
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relevant edges and centroids is adopted. Both the
first- and second-order derivatives are obtained by
successively applying Green-Gauss theorem to the
same MGSD. In Scheme I and III, the gradients at
any centroid are obtained by arithmetic averaging
of gradients at the relevant grid nodes, while they
are calculated by applying Green-Gauss theorem
onto grid-based GSD in scheme V. Application of
directional correction to these basic schemes gives
another three schemes, II, IV and VI, respectively.
Details about directional correction will be
illustrated in the following section.

Table 1 Spatial discretization schemes
Scheme Quadrature Type of GSD Directional

correction
I One-point MGSD no
II One-point MGSD yes
III Two-point MGSD no
IV Two-point MGSD yes
V Two-point MGSD,GGSD no
VI Two-point MGSD,GGSD yes

For simplicity, the spatial discretizations based on
scheme I and III are described here. In Scheme I,
derivatives at node i of interest can be
approximated, respectively, as

1 1

1 1
,
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Here,
ij

SX and
ijSY , and nx and ny, are,

respectively, the two components of a face vector
and a unit normal vector with respect to x and y
directions. They are evaluated and stored before the
intensive calculation is started. K denotes the total
number of nodes in the stencil of the node i .
In Scheme III, the values of functions and gradients
at the centroids of grids are calculated by simple
arithmetic averaging of values at constitutive nodes.
Thus, the derivatives are approximated as follows:
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In comparison to schemes based on one-point
quadrature, these schemes based on two-point
quadrature impose additional computational
demands and storage for values at centroids and
face vectors associated with their common grid
edge.
The edge-based data structure is adopted in the
study, together with scatter-gather approach, as
described by Barth [6][7].

3. Analyses of Stencil of Supporting
Nodes
For convenience and simplicity, the discretizations
of gradients and Laplace operator are performed
onto structured quad grids and equilateral triangles,
respectively. The coefficients of supporting nodes
are analysed accordingly. The stencils for gradient
approximation with different schemes are shown in
Fig. 2.
As addressed by Barth [6], for good discretization
schemes, the weighting coefficients for Laplace
operator are expected to be positive and
proportionally varied with distance to the node of
interest. Besides, for better computational
efficiency, compact stencil corresponding to
supporting nodes should be created. In-depth
discussion about this issue can be found in
Haselbacher and Blazek [8].
As indicated in Fig. 3(a), 3(c) and 3(e), schemes I,
III and V result in wide stencils with unfavorable
weighting coefficients on structured quad grids.
With such schemes, as addressed in Blazek [9],
unexpected decoupling solutions may be produced,
which will be further illustrated in the following
section.
Crumpton et al [10] proposed to use modified
gradients for the approximation of second-order
derivatives, with the help of the following
directional correction along grid edges:
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and Xi and Xj denotes the positions of node i and j,
respectively.
As depicted in Fig. 3(b) and 3(e), relatively
compact stencil with favorable coefficients are
formed in Scheme II and VI. Scheme II has 5-point
based stencil and Scheme VI corresponds to 9-node
based compact stencil. However, as shown in Fig.
3(d), Scheme IV still results in unfavorable stencil.
The analyses were also conducted on equilateral
triangles. Fig. 4 shows the stencils and
corresponding weighting coefficients of supporting
nodes for a discretized Laplace operator. It is
obvious that schemes II, IV, V and VI, all produce
stencils with favorable coefficients on equilateral
triangles, except schemes I and III. Besides, it is
interesting to notice that both schemes II and VI
produce identical stencil, so do schemes IV and V.
With additional concerns about computational
efficiency, schemes II and VI are superior to
schemes IV and V, because of compactness in
stencil.
In summary, upon the stencil analyses, both
scheme II and scheme VI are proposed to be used
in the IFDM, because both of them produce
compact stencil with favorable coefficients on both
types of regular grids of concern (quadrilateral and
triangular).

(a) I and II (b) III, IV,V
and VI

(c) I, II, III,
IV,V and VI

Fig. 2 Stencils and weighting coefficients for the
approximation of ( iu

x



, iu
y




) on different types of grids

(a) I (c) III (e) V

(b) II (d) IV (f) VI
Fig. 3 Stencils and weighting coefficients for the
approximation of 2 2

2 2
i iu u

x y
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
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on quadrilateral grids

(a) I and III (b) IV and V (c) II and VI
Fig. 4 Stencils and weighting coefficients for the

approximation of 2 2

2 2
i iu u

x y
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
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on equilateral triangles

4. Application of IFDM for Solution
of Poisson Equation

4.1 Poisson equation and its discretization
The IFDM is used to predict the solution to Poisson
equations on a square domain. In current study, the
Dirichlet condition is applied to the boundaries, i.e.,
the values at the boundaries are prescribed.
The pseudo-transient approach is used in current
study for pursuing steady-state solutions. The
governing equations under investigation take the
following form:
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The exact solution to this Poisson equation is
( 2 3 )(̂ , ) ( , )x yU x y e x y   (10)

As described above, the function values at the
boundaries are specified accordingly.
The spatial derivatives are discretized as shown in
previous section and the temporal term is dealt with
the explicit five-stage Runge-Kutta (RK5) method
in current study.
The convergence index in the form of
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is evaluated at each time-step. For excluding the
effect due to the temporal discretization,
computations are terminated when error_norm
approaches machine error. In current study,
numerical errors for the overall field are predicated
in the form of

2 2

1 1

ˆ ˆ( ) /
nnode nnode

i i i
i i

error U U U
 

   (12)

where nnode is the total number of nodes in the

domain, and iU and îU are predicted and exact
function values at node i, respectively. The node-
wise relative error is also evaluated in the fashion
of

ˆ ˆ/i i i irerror U U U  (13)

4.2 Results and Discussion
In current study, three types of grids, i.e. structured
quadrilateral grids, unstructured right triangular and
irregular triangles, are investigated, as shown in Fig.
5. The unstructured right triangles are generated by
simply splitting the quad along one of its diagonals.

(a) structured
quad

(b) right
triangle

(c) irregular
triangle

Fig. 5 Representative grids under investigation

As shown in Fig. 6 (a), it is obvious that the
decoupled solution is predicted by using Scheme I
when it is applied onto structured quadrilateral
grids. With the help of directional correction, this
problem is overcome in Scheme II, as shown in Fig.
6(b).

re rror

0 .00 8
0 .00 7 5
0 .00 7
0 .00 6 5
0 .00 6
0 .00 5 5
0 .00 5
0 .00 4 5
0 .00 4
0 .00 3 5
0 .00 3
0 .00 2 5
0 .00 2
0 .00 1 5
0 .00 1
0 .00 0 5

(a) Scheme I
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(b) Scheme II
Fig. 6 Contour plots of relative errors on structured

quadrilateral grids (441 nodes)

Besides, with directional corrections, the overall
numerical error is dramatically reduced, as shown
in Table 2 below. However, with Scheme II,
smaller time step is needed for stability
requirement at the cost of more intensive
computation in terms of the number of iterations.

Table 2 Comparison of accuracy in prediction by
using Scheme I and Scheme II

Scheme I Scheme IINo. of
nodes error iteration error iteration

36 1.96e-2 20 5.07e-3 24
121 8.58e-3 89 1.66e-3 82
441 2.63e-3 202 4.87e-4 303

1681 7.16e-4 728 1.33e-4 1379
6561 1.86e-4 2679 3.38e-5 4299
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1.00E+00

0 1000 2000 3000 4000 5000 6000

No. of nodes

E
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Scheme II (quad)
Scheme VI (quad)
Scheme II (right-t)
Scheme VI (right-t)

Fig. 7 Profiles of accuracy for schemes II and VI
on structured quadrilateral and right triangular grids

In general, Scheme II gives more accurate
prediction than Scheme VI on structured
quadrilateral grids, while the both schemes result in
more accurate prediction on right triangles. More
precisely, the Scheme VI gives slightly better
prediction than Scheme II when right triangles are
used. It implies that the scheme VI may give more
accurate prediction on irregular grids. This is
proved to be true, as shown in Table 3. The better
accuracy may attribute to the accurate prediction of
integration over domain faces.

Table 3 Overall errors predicted based on irregular
triangles

errorNo. of
nodes

Time-step
Scheme II Scheme VI

131 0.008 1.95e-3 1.68e-3
478 0.001 7.02e-4 6.46e-4

1887 0.0005 1.89e-4 1.74e-4
7457 0.0001 4.38e-5 4.12e-5
29629 0.00003 1.22e-5 1.11e-5



5. Conclusion
In current study, a new irregular-grid finite
difference method (IFDM) for governing equations
in strong form is development. The IFDM can be
used for general application subjected to arbitrary
geometries. In this paper, the principle of IFDM,
based on Green-Gauss theorem, is introduced and
the numerical procedure for predictions of spatial
derivatives is elucidated. Analyses of the stencils of
supporting nodes for discretized spatial derivatives,
with respect to totally eight types of discretization
schemes, are performed. Assessment is made upon
the compactness of stencil and positivity of
weighting coefficients. Two schemes with better
efficiency and accuracy are selected in further
study. Numerical excises by using the two
schemes are carried out for solutions to a Poisson
equation on a square domain. It further proves that
the both schemes indeed give satisfactory
prediction. Besides, the Scheme VI is superior to
Scheme II in terms of accuracy, especially on
irregular grids, at the cost of slightly higher
computational demand.
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