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Abstract: - The purpose of this paper is to analyze numerically the problem of the steady heat transfer by 

natural convection in a vertical cylinder opened at both ends and filled with a succession of fluid saturated 

porous elements. The study is carried out using the widely used Darcy-Brinkman flow model with 

establishment properties at the cylinder exit. The heat transfer coefficients are performed and discussed. In the 

case of constant wall temperature at the porous elements, the results show two types of flows, with and without 

fluid recirculation, which depend with the filtration Rayleigh number. This recirculation gives considerable 

augmentation in heat transfer in the vicinity of the interface porous-fluid. 
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1 Introduction: 
Open channels present a difficult problem to the 

mathematical formulation. Although many 

experimental and numerical works were published 

during the last decades, this problem remains 

difficult to solve when the formulation is based on 

the complete form of the conservative equations (the 

only one which make possible to approach reversal 

flows) in a geometry limited to the only channel, in 

particular because the writing of the boundary 

conditions of entry and of exit remains a largely 

open question. The heat transfer and the 

hydrodynamic problem in heated or cooled vertical 

channel were very largely studied since nearly fifty 

years. Indeed, the plane channel is representative of 

several problems like the chimney, the plane solar 

collector, or the cooling of the electronic 

components (Incropera, 1988).  

One of the first experimental studies of the 

natural convection in a vertical channel is the paper 

of Elenbaas (1942), which determined the various 

modes of flow according to a modified Rayleigh 

number (Rayleigh number reported to the 

dimensionless aspect ratio of the channel). The 

results show that for low Rayleigh numbers, the 

flow is fully developed, whereas the boundary layer 

mode characterise the high Rayleigh numbers. Bar-

Cohen and Rosenhow (1984) presented, using 

experimental and numerical results, a whole of valid 

correlations in various situations, for channels 

heated symmetrically or asymmetrically, with heat 

flux or constant wall temperatures imposed. In the 

symmetrical case, these correlations were recently 

improved by Olsson (2004). The first numerical 

studies, based on a parabolic formulation of the 

equations (axial diffusion neglected), confirmed 

these results (Sparrow and Azevedo, 1985). 

Although many articles present experimental and 

numerical simulations for fluids in ducts, few results 

concerning the presence of porous media are 

available. One can quote the work of Hadim (1994) 

who considered a plane channel provided with a 

succession of porous substrates heated by a constant 

heat flux at bottom and adiabatic on the higher wall. 

The aim of the present work is to treat 

numerically the problem of the steady natural 

convection, which occurs in a vertical cylinder, 

opened at both ends and filled with a succession 

of fluid saturated porous elements. The lateral 

wall is maintained at a constant temperature at the 

level of the porous elements and adiabatic 

condition is taken at the other parts of the walls. 

The study is carried out using the Darcy-

Brinkman flow model and the set of equations is 

resolved by the finite volumes method. 
 

2 Mathematical  formulation: 
A schematic of the physical model is shown in 

Figs. 1. It is assumed that the flow in the cylinder is 

two-dimensional. The porous medium is considered 

to be homogeneous, isotropic and saturated with a 

pure single-phase fluid, which is in thermal 

equilibrium with the solid matrix. The 

thermophysical properties of the solid matrix and 

the fluid are assumed to be constant, except in the 

body force term of the momentum equations 

invoking the Boussinesq's approximation. 

Although for certain porous medium (eg. spherical 

pearls) porosity can vary because of the Channeling 

effect close to the walls (Vafai, (1984)), for our part, 
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we consider a confined porous medium, therefore 

permeability and porosity are constant (Hunt and 

Tien, (1988)). So, in the energy equation, viscous 

dissipation is neglected whereas axial conduction is 

taken into account which is considered can be 

important for small Reynolds numbers (Hadim and 

Govindarajan, (1988).  

The current study assumes the validity of the 

Darcy-Brinkman flow model. In these conditions, 

dimensionless conservative equations are (Lauriat 

et Prasad, (1989)): 

Continuity Equation: 

( )� �� � ��� �� �� 	 
� �� � � ��  

Momentum Equations: 

In the longitudinal direction x : 

    
    
    

� �� �� � �� � �� � �� � � �� ��� � � 	 
 � � � � � 
� �� � �
 � �� � �� 
 � �
 � �
� � � � � � � � � � � �  

In the radial direction r : 
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Energy Equation: 
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Fig1. Geometrical Configuration 

Where the dimensionless groups in the equations are recapitulated as follows: 

2
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3 Numerical Resolution: 
The governing equations with the associated 

boundary conditions are solved by the finite 

volumes method, initiated by Patankar (1980), 

which is based on the solution of difference 

equations obtained by integrating the differential 

equations of conservation over control volumes 

enclosing the nodal points. The numerical program 

was validated for the classical forced convection 

compared to the analytic solution proposed by 

Ameziani and Bouhadef (2001) 

 

4 Results: 
We have presented the results of the numerical 

simulations in terms of curves showing evolution of 

space averaged Nusselt numbers and axial velocity 

at the centre evolution. Stream function map are 

also presented. In this paper, all the calculations 

have been performed for the air Pr=Sc=071, Aspect 

ratio A=10, Rk=1. 
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Figure 2 Evolution of the axial velocity along the duct. 

 

Dynamical results:  
Figures (2 a-f) illustrate the evolution of the axial 

velocity (Uc ) along the cylinder for several values 
of the Darcy, Reynolds and Grashoff numbers.  

For Re=1 and low values of the Grashoff number 

(
43 1010 − ), figures (2-a) and (2-b) show a 

boundary layers development of the central velocity 

evolution, which develops starting from the flat 

profile at the entry ( 1=Uc ) and progressively 

tending towards an established profile of axial 

maximal value equal to twice the value of entry 

for 1=Da , representing the limit of forced 

convection in the fluid case.  

The effect of the porous matrix appears clearly 

on these plots, where one can mention the reduction 

of the axial velocity due to braking in the porous 

elements to reach a total braking for 
610−=Da , 

resulting in axial velocity values, in these matrices, 

of 1=Uc (Darcian regime). 

When the Grashoff number value increases, the 

effects of forced convection tend to vanish, to leave 

place to reversal fluid motion (natural convection 

prevalent) which is very accentuated with the 

increase of permeability. These flows downward 

have smaller values for lower permeabilities, fact 

precisely due to the braking when crossing the 

porous matrix. 
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When the Reynolds number is weak ( 1=Re , 

fig. 2-a-c), one notices that the effects of the 

permeability remain visible for values of the Darcy 

numbers lower than the unity value (Da≤1), for low 

values of the Grashoff number (Gr≤10
4
). When the 

Reynolds number becomes more important (Re=10), 

the effects of forced convection remain prevalent up 

to values of Gr of about 10
4
. 

For larger Reynolds numbers (Re=100), it clearly 

appears a prevalence of the forced convection until 

Grashoff numbers of about 10
5
. The combined 

effects of mixed convection appear then, 

characterized by recirculation flow, in particular 

with high permeability (Da=1), and an acceleration 

of the fluid towards the exit of the channel (2-f 

figures)).  

(P
r=
0
.7
1
, 
A
=
1
0
)a
- 
R
e=
1
, 

G
r=
1
0
+
4
  
  

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X  
d
- 
R
e=
1
0
, 
G
r=
1
0
+
4
 

0,0 0,2 0,4 0,6 0,8 1,0

0

2

4

6

8

10

12

Gr=1.e+4 Re=10

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X 

 

b
- 
R
e=
1
,G
r=
1
0
+
5
 

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X  

e-
 R
e=

1
0
0
, 
G
r=
1
0
+
4
 

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

15

20

25

30

35

40

Gr=1.e+4 Re=100

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X 

 

c-
 R
e=

1
, 
G
r=
1
0
+
6
 

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X  

f-
 R
e=

1
0
0
, 
G
r=
1
0
+
5
 

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

15

20

25

30

35

40

Gr=1.e+5 Re=100

 Da=1.

 Da=1.e-2

 Da=1.e-4

 Da=1.e-6

N
o
m
b
re
 d
e
 N
u
s
s
e
lt
 N
U

X 

 

 

Figure 3 Evolution of the local Nusselt numbers along the duct. 

(Pr=0.71, A=10) 

Thermal results: 
On the figures (3-a-f) are represented the 

evolutions of the local Nusselt numbers according to 

the axial coordinate for various values of Grashoff 

and Darcy numbers. 

It is noticed that for Re=1, the evolution of the 

transfer coefficient reveals an important value when 
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one approaches the first porous element, this is due 

to the important variations in temperature between 

the wall and the entering fluid (first heat source). 

The transfer is then decreasing when it crosses this 

porous obstacle. Thereafter the other end of the 

source presents another peak of increase in transfer 

which corresponds to a temperature gradient due to 

the important variations in temperature between the 

fluid and the wall in the vicinity of the interface 

porous-fluid. Indeed, alternation between the porous 

zones corresponding to parts of hot walls and the 

adiabatic colder zones, causes a downward return of 

the fluid particles in the vicinity of the interface 

porous-fluid. 

On the figures (3-d-f) the evolutions of the local 

Nusselt number along the duct are represented, for 

two other values of the Reynolds number (10 and 

100). It is noticed that, for all the other fixed 

parameters, the exchanges are more important as the 

Reynolds number is high, which is physically in 

conformity insofar as the Re increases augments the 

inertial effects and the fluid flow and thus increases 

the quantities of energy extracted by convection. 

Nevertheless, when the Reynolds number is weak, 

the peak of increase in the transfers at the end, in 

particular of the second porous matrix, allotted to 

the fluid recirculation is relatively greater than for 

the cases with higher values of Reynolds. This is 

explained by the fact that the movements of 

recirculation of natural convection, which cool the 

fluid in this vicinity, are more active with low 

velocity ascending flow. 

For high Reynolds numbers (Fig. 3-e,f), one 

notices that the peaks of the end of matrices tend to 

become relatively weak, which can be also 

explained in this case, with the fact that the upswing 

of forced convection will override the effects of 

natural convection. It is clear on these figures that 

the permeability presents a considerable effect on 

the heat transfer. It is noticed that these exchanges 

decrease with the reduction of the Darcy number. 

For very weak Darcy numbers, the convective 

transfer vanishes more and more and tends towards 

diffusive transfers, in particular for Grashoff 

numbers, Gr≤10+4. This decrease of the transfers is 

due to the weakening of the flow with the decrease 

of the permeability; the convective flow is then less 

and less important and induces a conductive mode. 

 

5 Conclusion : 
The problem of the steady heat transfer by 

natural convection in a vertical cylinder opened at 

both ends and filled with a succession of fluid 

saturated porous elements is numerically 

analysed. The heat transfer coefficient is performed 

and discussed. In the case of constant wall 

temperature at the porous elements, the results show 

two types of flows, with and without fluid 

recirculation, which depend with the Grashoff 

number. 
For low Grashoff numbers Gr≤104, even for 

small Reynolds numbers (Re=1), the axial velocity 

evolution have a behaviour of boundary layer 

development in forced convection. In fact, it is the 

effect of the forced convection which overrides the 

effects of the buoyancy forces which are not enough 

powerful to start the process of the natural 

convection. This behaviour is confirmed by the 

stream function maps (fig. 4-a). 

The growth of the Grashoff number increases 

maximum central velocity, and this increase is more 

important as the Reynolds number augments. 

Let us note that starting from a value of the 

Grashoff number of about 
510  (fig. 4-b-e), 

recirculation zones appear, traduced by a negative 

central velocity Uc and a prevalence of the natural 

convection effects. This phenomenon is confirmed 

by the stream function maps on which the swirls of 

turnoff flow appears clearly. These latter are more 

accentuated in the areas close to the porous 

obstacles, when the permeability is important. 

 

References: 
[1] Bar-Cohen A. and Rohsenow, W. M. Thermally 

optimum spacing of vertical, natural convection 

cooled, parallel plates. J. Heat Transfer, vol. 116, 

pp. 116-123, 1984.  

[2] Elenbaas W., 1942, Heat dissipation of parallel 

plates by free convection, Physica 9, n° 1, pp. 1-23 

[3] Incropera F.P., 1988, Convection heat transfer in 

electronic equipment cooling, J. Heat Transfer 110, 

pp. 1097-1111 

[4] Olsson C-O, 2004, Prediction of Nusselt number 

and flow rate of buoyancy driven flow between 

vertical parallel plates, J. Heat Transfer, Vol. 126, 

pp. 97-104. 

[5] Sparrow E.M., Azevedo L.F.A., Vertical-

channel natural convection spanning between the 

fully-developed limit and the single-plate boundary 

layer limit, Int. J. Heat Mass Trans. 28 (1985) 1847-

1857.  

[6] Hadim A. and Govindarajan S. Develop-ment of 

laminar mixed convection in a vertical porous 

channel, in Symbolic Computation in Fluid 

Mechanics and Heat Mass Transfer, ASME HTD-

Vol. 105, pp. 145-153, 1988. 

[7] Hunt M. L. and Tien C. L., Effect of thermal 

dispersion on forced convection in fibrous media, 

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp281-286)



Int. J. Heat Mass Transfer, Vol. 31, pp. 301-310, 

1988. 

[8] Lauriat G. and Prasad V. Non-Darcian effects on 

natural convection in a vertical porous enclosure, 

Int. J. Heat Mass Transfer, Vol. 32, No. 11, pp. 

2135-2148,1989. 

[9] Ameziani D.E. and Bouhadef K. Analyse 

transitoire des transferts de chaleur et de masse dans 

une conduite poreuse. 6ème Congrès de Mécanique. 

15-18 Avril 2003. Tanger, Maroc. 

[10] Vafai K., Convective flow and heat transfer in 

variable porosity media, J. Fluid Mechanics, Vol. 

147, pp. 233-259, 1984. 

[11] Patankar S. V. Numerical heat transfer and  

fluid flow. Series in Computational. Methods in 

Mechanics and Thermal Sciences 

 

 

 

 

 

 

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

  

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

  

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

  

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

  

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

  

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

 
a-Da=1-10

-6 

Re=1-10 
b-Da=10

-4 
Re=1 c-Da=10

-6 
Re=1 d- Da=1 e- Da=10

-4 f- Da=10
- 

Gr=10
+3
 Gr=10

+5
 Re=1, Gr=10

+6
 

Figure 4 - Stream function maps for different situation. 

(Pr=0.71, A=10) 

Proceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Elounda, Greece, August 21-23, 2006 (pp281-286)


