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Abstract: - The flow of a viscous incompressible fluid contained between two concentric spheres that rotate with almost equal angular 
speeds is studied. For the numerical solution of the problem, which is described by a coupled and non linear system of PDEs, like the 
Navier-Stokes equations are, with their appropriate boundary conditions, the stream function-vorticity formulation is adopted and the 
solution of the problem is obtained developing an efficient numerical technique based on the central finite differences of second order 
accuracy. Our interest is focused on the secondary flow pattern and the radial and meridional components of velocity. It is found that 
the flow is bounded from the cylindrical surface that touches the inner sphere. 
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1 Introduction 
The flow in spherical shells is an important problem in 
fluid dynamics and geophysics. Besides some 
engineering applications, this simple system represents a 
parade example for study of structure formation. 
Furthermore, spherical flow is often used to investigate 
dynamics of large-scale geophysical and astrophysical 
motions in planetary interior and atmospheres [1]. In this 
respect, a wide spherical shell seems generally more 
relevant as, e.g. the whole mantle thickness of the major 
terrestrial planets (Earth, Venus, and Mars) is believed 
to be about half of the outer sphere. 

Proudman [2] and Stewartson [3, 4] studied the fluid 
motion in the absence of heat and of a gravitational field 
when both spheres rotate with almost equal angular 
speeds, at large Reynolds numbers of flow. In [2, 3] it 
was shown that the fluid can be divided into two regions, 
the one that is outer to the cylinder circumscribing the 
inner sphere and the other, that is enclosed by this 
cylinder. The outer portion rotates as a rigid body with 
the angular velocity of the outer sphere. In the inner 
portion, centrifugal forces create a secondary circulatory 
motion (Mager [5]).  

Munson and Joseph [6] and Dennis and Singh [7] 
worked on the same problem considering spheres 
rotating with different angular velocities. The obtained 
approximate solutions where valid for Re 500≤  in [5] 
and for Re 2000≤  in [6], where 2Re=ΩR ν  is the 
Reynolds number of the flow. In the previous notation Ω 
is a typical angular velocity, R is the radius of the outer 

sphere and ν is the coefficient of the kinematic viscosity 
of the fluid. 

Karahalios [8] studied the problem of two coaxial 
surfaces of revolution, which rotate about the common 
axis of symmetry with almost the same angular velocity. 
At large Reynolds numbers, three singular surfaces were 
found. One over each surface of revolution and a 
cylindrical shear layer touching the outer surface. 
Outside the cylinder the velocity was determined by the 
velocity distribution over the two boundary layers, while 
inside the cylinder the fluid was at rest. 

Hollerback [9] investigated numerically the flow of 
an electrically conducting fluid in a differentially 
rotating spherical shell, in the presence of an imposed 
magnetic field. For a very weak field the flow was seen 
to consist of an Ekman layer on the inner and outer 
spherical boundaries, and a Stewartson layer on the 
cylinder circumscribing the inner sphere and parallel to 
the axis of rotation, in agreement with the classical non-
magnetic analysis. 

In the present work we simulate the flow between 
two almost rigidly rotating spheres and solve the 
equations of motion numerically for various values of 
the Reynolds number. In the numerical treatment we use 
a finite difference scheme, described by Loukopoulos et 
al. [10] and extended by Loukopoulos [11], of second 
order accuracy and convert the equations of motion into 
a system of linear algebraic equations. The solution of 
this system is obtained by an iterative procedure and the 
method converges for Re 1000≤ . 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp142-147)



 
2 Equations of Motion  
We consider the steady flow of a viscous incompressible 
fluid between two concentric spheres, rotating about a 
common diameter with almost equal angular velocities 

1Ω  and ( )2 1Ω =Ω 1+ε Ω2, where ε 1!  and subscripts 1 
and 2 correspond to the inner and to the outer sphere. 
Let in addition *

1r = R k  and *
2r =R  be their radii where 

k >1. The flow is symmetric about the axis of rotation 
and hence all quantities are independent of the azimuthal 
angle φ. If (u*, v*, w*) are the velocity components in 
spherical polar coordinates (r*, θ, φ), Fig. 1, the 
equations of motion and continuity are 

 
Fig. 1. Spherical annulus. 
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where ρ is the density and   

2 2
*2

*2 * * *2 *2 2
2 cosθ 1= + + +

θr r r r sinθ r θ
∂ ∂ ∂ ∂∇

∂∂ ∂ ∂
. 

The boundary conditions of the problem are: 
Inner sphere *r = R k : *u =0 , *v =0 . 
Outer sphere *r =R :  *u =0 , *v =0 . 

Eliminating the pressure terms between (1) and (2), 
introducing the stream function Ψ* and the axial velocity 
function χ* by the relations 

*
*

*2
1 Ψu =

θr sinθ
∂
∂

,   
*

*
* *

1 Ψv =-
r sinθ r

∂
∂

,   
*

*
*
χw =

r sinθ
     (5) 

and using the following non dimensional variables  
* 3

0Ψ = R Ω Ψ ,  * 2
0χ =R Ω χ ,  *r =Rr ,                          (6) 

the following equations are obtained: 
Stream function equation 
 

2D Ψ= -J ,                                                                      (7) 
 
where ( )J= rsinθ ζ  is a function of the third component 

of the vorticity ( )= ξ, n, ζω . 
Vorticity transport equation 
 

( )
( )

2
2

Ψ,JRe 2J Ψ ΨD J= - + r cosθ- sinθ
r,θ rsinθ r θr sinθ

 ∂ ∂ ∂ 
  ∂ ∂ ∂   

 3 2
Re 2χ χ χ- rcosθ- sinθ

r θr sin θ
∂ ∂ 

 ∂ ∂ 
.                          (8) 

 
Axial velocity function equation 
 

( )
( )

2
2

Ψ,χReD χ=-
r,θr sinθ

∂
∂

,                                                   (9) 

 

where 
2 2

2
2 2 2 2

cosθ 1D = - +
θr r sinθ r θ

∂ ∂ ∂
∂∂ ∂

,  

( )
( )
a,b a b a b= -
x,y x y y x

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

,  2
0Re =Ω R ν  is the Reynolds 

number of the flow and 0Ω  is a typical angular velocity. 
In the present case we have taken 1 0Ω =Ω . 

The boundary conditions of the flow are 
ΨΨ= =0
θ

∂
∂

           on both boundaries,                        (10) 
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2 1
2

0

Ω1χ= sin θ
Ωk

   at   r=1/k  (inner boundary), 

(11) 
2 2

0

Ωχ=sin θ
Ω

        at    r=1 (outer boundary), 

Τhe boundary conditions governing J is found to be 
of O(Δr2) following similar procedure with Wood [12] 
and they are 

( ) ( ) ( )
2

3Ψ 1/k+Δr,θ J 1/k+Δr,θ
J 1/k,θ =- -

2Δr
 at r=1/k ,  

(12) 

( ) ( ) ( )
2

3Ψ 1-Δr,θ J 1-Δr,θ
J 1,θ =- -

2Δr
  at r=1.  

 
3 Method of Solution 
In the present work equations (7) to (9) have been solved 
numerically, using a numerical technique described by 
Loukopoulos et al. [10] and extended by Loukopoulos 
[11], as follows. We construct a grid of mesh points, Fig. 
2, with constant radial and angular mesh sizes 

( )Δr= 1-1 k Ν  and Δθ= π M  where N and M are 
integers indicating the density of the grid of mesh points. 
We next denote all quantities at a typical set of grid 
points ( )0 0r ,θ , ( )0 0r +Δr,θ , ( )0 0r ,θ +Δθ , ( )0 0r -Δr,θ  and 

( )0 0r ,θ -Δθ  by the subscripts 0, 1, 2, 3 and 4 respectively 
and replace equations (7) to (9) by central differences. 
We are therefore led to an algebraic system of equations 
in which the matrix of the coefficients of the unknowns 
may be diagonally dominant, like (7) is. Following the 
same steps like Loukopoulos et al. [10] we are led to 
systems of linear equations for all unknowns functions 
where the matrices of coefficients of unknowns are 
diagonally dominant so that they can be solved by 
iterative methods. 

 
Fig. 2. Mesh points in r – θ plane. 

In this way equations (7) to (9) take the form 
( )2

1 1 2 2 3 3 4 4 0 0 0 0a J +a J +a J +a J +a J =-2h G r ,θ ,              (13) 

1 1 2 2 3 3 4 4 0 0n χ +n χ +n χ +n χ +n χ =0 ,                               (14) 
2

1 1 2 2 3 3 4 4 0 0 0m Ψ +m Ψ +m Ψ +m Ψ +m Ψ =-h J ,               (15) 
 
with the boundary conditions given by (10), (11) and 
(12). The coefficients ai, ni, mi (i = 0, 1, 2, 3, 4) of the 
unknowns J, χ and Ψ and the term ( )0 0G r ,θ  are 
presented in [10]. 

The linear systems (13), (14) and (15) are sparse and 
the matrices associated with them are always diagonally 
dominant since the coefficients of the unknowns satisfy 
the conditions (Atkinson [13]) 
N×M

ij ii
j=1
j i

a a
≠

≤∑ ,   
N×M

ij ii
j=1
j i

n n
≠

≤∑ ,   
N×M

ij ii
j=1
j i

m m
≤

≤∑ ,   

i=1,2,...,N×M , j=1,2,...,N×M . 
The solution of all these equations is obtained by 

employing the under - relaxation method at all internal 
points of the annular region 1 k <r<1, 0<θ<π  subject to 
boundary conditions that are either known a priori 
(equations (10)–(11)) or are calculated by equations 
(12). The iterative scheme is repeated until an adopted 
criterion of accuracy for the variables χ, J and Ψ is 
satisfied. This is 

( ) ( )
( ) ( )

s
-5

s+1

g r,θ
max 1- 5×10

g r,θ
≤ . 

In the previous notation g stands for anyone of the 
variables J, χ, Ψ and s is the number of iterations. The 
iterative sequence terminates when all quantities have 
converged to limits and satisfies the criterion of 
accuracy. 
 
4 Results and Discussion 
In order to study the flow of a viscous incompressible 
fluid contained between two concentric spheres that 
rotate with almost equal angular speeds, the system of 
equations (7)-(9) was solved, under the appropriate 
boundary conditions. The results have been obtained for 
radius ratio k=3,4,5 , angular velocities 

1 0 2 0Ω =Ω , Ω =0.99Ω  and for Reynolds number 
Re 1000≤ . 

Figure 3 depicts the zero vortex mode at Re=500  for 
radius ration k=3,4,5 . The figure is a typical two 
dimensional projection of the flow on the ( )θr,  plane at 
a fixed azimuthal angle φ. Counter-clockwise circulation 
is shown as solid line, clockwise circulation is shown as 
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dashed line. Owing to the Ekman pumping at the poles, 
fluid is thrown outward along the rotating inner sphere 
and forms inward radial jets at the poles and outward 
radial jets at the equator. The flow is reflection-
symmetric about the equator. As the Reynolds number is 
increased, the flow is restricted in the region defined 
from the inner sphere and the cylinder touching the inner 
sphere, as predicted by Proudman [2] for infinite Re. 
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Fig. 3. Streamlines of the motion for 500Re = and (a) 3k = ; 

(b) 4k = ; (c) 5k = . 
 
In Figures 4(a) and 5(a) the secondary flow 

streamline pattern on a meridional plane is presented 
when both spheres are rotated with almost equal angular 
velocities for k=5 , Re=100  and Re =800 respectively, 
whereas in Figures 4(b, c, d) and 5(b, c, d) the function J 
of the vorticity, the radial component of velocity and the 
meridional component of velocity patterns are shown. In 
figures 4 and 5 solid lines show positive velocities and 
dashed lines show negative velocities. 
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Fig. 4. Streamlines of the motion, function J of the vorticity, 

radial velocity and meridional velocity for 100Re = and 
5k = . 
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Fig. 5. Streamlines of the motion, function J of the vorticity, 
radial component of velocity and meridional component of 

velocity for 800Re = and 5k = . 
 

The velocity distributions are calculated from the 
solutions of the stream function Ψ. The velocity 
distribution depends on the radial and meridional 
coordinates and on the mode of the flow. In the 
equatorial zone, the radial velocity is zero or nearly zero, 
as expected. 

The radial velocity u [(θ = 2.25o, 44o, 88.88o), r] as 
function of the radial coordinate r is plotted in Figure 
6(a) for different values of the angle θ. In Figure 6(b) the 
radial velocity u [(r = 0.3, 0.6, 0.9), θ] as a function of 
the meridional coordinate θ is plotted for different values 
of distance r. Near the poles the flow is directed inward, 
so that the radial velocity component is negative in this 
region. 
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Fig.6. (a) Variation of radial component of velocity with radial 
distance at θ = 2.25o, 44o, 88.88o for 500Re =  and 5k = ; (b) 

Variation of radial component of velocity with meridional 
coordinate θ at r = 0.3, 0.6, 0.9 for 500Re =  and 5k = . 

 
The meridional velocity distribution v [(θ = 2.25o, 

44o, 88.88o), r] as function of the radial coordinate r is 
plotted in Figure 7(a) for different values of angle θ. The 
meridional velocity distribution v [(r = 0.3, 0.6, 0.9), θ] 
as function of the meridional coordinate θ is plotted in 
Figure 7(b) for different values of distance r. In the 
equatorial zone, the meridional velocity is zero or nearly 
zero, as expected. 

 

 (a)
0,2 0,4 0,6 0,8 1,0

-0,00008

-0,00006

-0,00004

-0,00002

0,00000

0,00002

0,00004

0,00006

0,00008

0,00010
 

v

r

k=5, Re=500
 θ=2.25ο

 θ=44ο

 θ=88.88ο

 θ=133.33ο

 θ=177.77ο

 

(b) 
0 20 40 60 80 100 120 140 160 180

-0,00015

-0,00010

-0,00005

0,00000

0,00005

0,00010

0,00015

 

 

v

θ(ο)

k=5, Re=500
 r=0.3
 r=0.6
 r=0.9

 
 

Fig. 7. (a) Variation of meridional component of velocity with 
radial distance at θ = 2.25o, 44o, 88.88o, 133.33o, 177.77o for 

500Re =  and 5k = ; (b) Variation of meridional component 
of velocity with meridional coordinate θ at r = 0.3, 0.6, 0.9 for 

500Re =  and 5k = . 
 

The radial velocity u near the inner boundary (r = 
0.3) as function of the meridional coordinate θ is plotted 
in Figure 8(a) for different values of Reynolds number 
(Re = 100, 300, 500). The radial velocity u near the 
outer boundary (r = 0.9) as function of the meridional 
coordinate θ is plotted in Figure 8(b) for different values 
of Reynolds number (Re = 100, 300, 500). 
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(b) 
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Fig. 8. (a) Variation of radial component of velocity with 

meridional coordinate near the inner boundary ( 3.0r = ) for 
500,300,100Re =  and 5k = ; (b) Variation of radial 

component of velocity with meridional coordinate near the 
outer boundary ( 9.0r = ) for 500,300,100Re =  and 5k = . 

 
The meridional velocity distribution v near the inner 

boundary ( r =0.3 ) as function of the meridional 
coordinate θ is plotted in Figure 9(a) for different values 
of Reynolds number ( Re =100, 300, 500 ). The 
meridional velocity distribution v near the outer 
boundary ( r =0.9 ) as function of the meridional 
coordinate θ is plotted in Figure 9(b) for different values 
of Reynolds number ( Re =100, 300, 500 ). 
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Fig. 9. (a) Variation of meridional component of velocity with 
meridional coordinate near the inner boundary ( 3.0r = ) for 

500,300,100Re =  and 5k = ; (b) Variation of meridional 
component of velocity with meridional coordinate near the 
outer boundary ( 9.0r = ) for 500,300,100Re =  and 5k = . 

 
5 Conclusions 
It is found that the cylindrical surface that touches the 
inner sphere (the axis being the axis of rotation) is a 
singular surface in which velocity gradients are very 
large. Everywhere outside this cylinder, the fluid rotates 
as a rigid body with the same angular velocity as the 
outer sphere. Inside the cylinder, the velocity 
distribution in the central (inviscid) core of the motion is 
shown to be determined by the velocity distribution in 
the boundary layers over the spheres, and explicit 
solutions are obtained for all these velocity distributions. 
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