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Abstract: In this study, we investigate two-dimensional backward-facing step flows at moderate Reynolds
numbers. The investigation is done on both time-dependent and time-independent inflow. The time-
dependent in flow investigated in this study is in sinusoidal form. We are mainly interested in the effect
of amplitudes and the frequencies of the inflow on the characteristic of the flow fields. The main finding
for this study is that the flow shows quasi-periodic behavior as we increase the forcing frequency to be at
least 12 for all amplitudes studied.
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1 Introduction

Numerical study of two-dimensional flow over a
backward-facing step is considered. This problem is
a well-know test case for studying separated flow at the
step edge, producing a curved shear layer which sep-
arates at the reattachment region. One branch flows
back creating a recirculation zone behind the step, an-
other branch creates a new boundary layer on down-
stream. Because of these interesting phenomenon, nu-
merous investigations have been carried out both nu-
merical and experimental studied by many authors. The
interest in such a flow was intensified with both exper-
imental and numerical works of Armaly et. al, see [1].
They presented experimental works for the backward-
facing flows with expansion ratio H/h = 1.9423 and
Reynolds numbers up to 8000. The flow appear to be
three-dimensional as Reynolds number,ReD , reaches
400 (definition of ReD shown later in the next section).
Also, around this Reynolds number a secondary recir-
culation zone was observed on the upper wall. Kaik-
tsis et. al, [3], studied the bifurcation of the two-
dimensional laminar flow to three-dimensional flow.
They found that all unsteady states of flow are three-
dimensional when ReD ≈ 700. Moreover, when

ReD ≥ 700, flow is periodic with characteristic fre-
quency f1 on upstream and frequency f2 on down-
stream. Kim and Moin,[6] computed the flow over a
backward-facing step using a second-order method in
both space and time. They found a good agreement of
the reattachment length with the experimental data of
Armaly et. al up to ReD ≈ 500. When ReD greater
than 500, three-dimensionality effects needed to be in-
cluded in the simulation.

In this paper, the numerical study of two-
dimensional flow over a backward-facing step is per-
formed using the spectral-element method, [5]. We im-
pose inlet flow condition as a standard parabolic pro-
file. Flow fields are obtained by solving Navier-Stokes
equation on a range of 33 < ReD < 800. Our numeri-
cal results agree well with experimental data of Armaly
et. al up to ReD = 400. As expected, for higher values
of ReD, the discrepancy between numerical and exper-
imental data are found since above that Reynolds num-
ber the flow behavior appears to be three-dimensional.

We later focus our study to investigate the effects of
inflow conditions on the recirculation zone. For the pre-
liminary studies, the inflow condition is prescribed by
a periodic forcing function with flow parameters am-
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plitude and frequency for ReD = 300. At this ReD,
the flow solution is still steady and stable under non-
forcing inflow condition. One interesting question is
how amplitude and frequency affect on this steady and
stable solution.

Some numerical methodology are described in the
next section. Numerical results are shown in section 3.
Finally, summary and discussions are given in section
4.

2 Direct Numerical Simulation
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Figure 1: The computational domain.

We consider incompressible Newtonian fluid gov-
erned by the Navier-Stokes equations. The computa-
tional domain is shown in Figure 1. We set the non-
dimensional step height to be S = 0.9423, and chan-
nel inflow depth h = 1. Thus the expansion ratio is
H/h = 1.9423, exactly as in the experiments of Ar-
maly et. al, [1] and Biswas et. al, [2] . In our study, the
Reynolds number, ReD, is defined as

ReD =
ρUbD

μ
,

where ρ is the density of fluid, μ is dynamic viscosity,
Ub is bulk (average) velocity and D is 2h.

The boundary conditions are imposed at each bound-
ary as follows. For Γ2 − Γ4 and Γ6, no-slip boundary
condition is imposed. Γ6 has out-flow boundary condi-
tion. For the inflow boundary, Γ1, the boundary condi-
tions in form of velocity field U are set in two cases as
follows:

1. Case 1: U = (1, 0) for time-independent inflow
boundary condition.

2. Case 2: U = (u0(1 + A cos(2πu0ft
H ), 0) for time-

dependent inflow boundary condition.

Here, u0 is 1 A is amplitude and f is frequency of the
excitation. Under these boundary conditions, the nu-
merical solutions are obtained by solving the Navier-
Stokes equations by the spectral/hp element method,
NεκT αr , [5]. This method has been successfully
applied to simulate both two-dimensional and three-
dimensional flows for complex geometries, for exam-
ple, [4, 7, 8]. The flow domain is decomposed into
1226 triangular elements. For each element, the Jacobi
polynomial of order 10 is used as the expansion basis
to achieve accurate numerical results.

3 Numerical Results

3.1 Steady inflow

In this section, we vary ReD in the simulation from
33.33 to 800. At low ReD, fluid flow behaves like
creeping flow, see Figure 2, top. As shown in Figure
2, top, the reattachment point x1 is defined as the point
on the bottom wall where the streamwise velocity gra-
dient ∂u/∂y becomes positive. Here, x1 is about 1.263
for ReD = 33.33 .

Figure 2, bottom, shows a increased zoom of the cor-
ner region revealing that the second corner eddy is in-
deed captured in the currrent simulation. The ratio of
the first and second eddies found numerically in this
current study is about 16.736 which is in good agree-
ment with the analytical value. Similar considerations
for 10−4 ≤ ReD ≤ 1 can be found in [2]. As the value
of ReD increases, the value of x1 increases. We vary
ReD on the range of 33.33 < ReD < 800 and then
measure the value of x1. The relationship between x1

and ReD is shown in Figure 3, top. We see that there
is derivation between the experiment and numerical re-
sults since the flow appeared to be three-dimensional
when value of ReD closes to 400.

In addition to the primary recirculation zone, we
found a secondary recirculation zone near the upper
wall for ReD > 400. This due to the effects of ad-
verse pressure gradient at the edge of the step induces
the separated flow. The secondary recirculation zone
for ReD = 600 is shown in Figure 3, bottom. Again, at
moderated ReD = 600, the second eddies near the cor-
ner of step is found in our numerical simulation. Thus
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Figure 2: Top: Flow streamline in the primary recircu-
lation zone at ReD = 33.33. Bottom: Primary and sec-
ondary eddies near the corner of step for ReD = 33.33.

Moffatt ’s eddies exist not only for small ReD but also
for moderate ReD.

3.2 Periodic forcing inflow

In this section, we modify the inflow boundary con-
dition by including effects of small amplitude A and
time-periodic excitation on the parabolic profile which
can be expressed in case 2 of section 2.

In the preliminary studies, we perform the simu-
lation with the amplitude of the excitation at A =
0.25, 0.5, 0.75 and 1.0 and for each value of A the
flow is excited by five values of the frequency: f =
0.5, 6, 12, 18 and 24. The objective of the experiment is
two folds: first, to assess the effect of frequency on the
periodic oscillatory state; and second, to investigate the
effects of amplitude and frequency to the steady flow
solution.

We initiate our study first at ReD = 300. Here, the
flow solution of perturbed is steady and stable,[3]. For
ReD = 300, we found only primary recirculation zone
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Figure 3: Top: Relationship between x1 and ReD . Bot-
tom: Flow streamlines show primary and secondary re-
circulation zones for ReD = 600.
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with the length, x1 ≈ 6.8.
We plot the time history of the streamwise velocity

u at the point P1 (x = 7.53, y = 0.13) which nears
the reattachment point of the recirculation zone. Figure
4, top, shows the time history of streamwise velocity
component at point P1 for various values of A. When
the perturbed frequency f = 6, the flow is periodic for
all values of A. As A increases, the amplitude of u in-
creases with the same frequency. Moreover, we found
that, for 0 < F < 6, the flow is still periodic. In con-
trast, when f = 12, the flow shows quasi-periodic be-
havior, see Figure 4, bottom. Moreover, for f ≥ 12,
we found numerically that the flow still shows quasi-
periodic behavior for all values A studied.

We have also investigated the effects of A and f to
the oscillatory flow solution over one period by mea-
suring the averaged vorticity, ωavg , defined as

ωavg =
∫

Γ4

ω(x, t)dx,

where where ω(x, t) is vorticity field. The results from
variation of A as keeping f fixed at (f = 24) is shown
in Figure 5, top. For each value of A, the sign of aver-
aged vorticity changes between positive and negative.

From the figure, for each A,there are two points that
the vorticity is zero and as A increases, the averaged
vorticity increases. This behavior of flow is similar for
other values of f .

The numerical results for fixing A and varying f over
a period is shown in Figure 5, bottom. The averaged
value of vorticity does increases when f increases.That
is, the flow behavior approaches quasi-periodic when
the period of flow is small.

4 Summary and Discussion

We have presented here two-dimensional backward-
facing step flows in moderate Reynolds numbers in
both time-dependent and time-independent inflows.
The DNS results from the time-independent inflow
agree well with the experimental results until ReD is
beyond 400. And for the case of time-dependent in-
flow, we provide the results only for the case of ReD
= 300 first. However,we have observed the following
conclusions:

- The flow behavior show quasi-periodic behavior as
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Figure 4: Top: Time history of streamwise velocity at
ReD = 300 for various values of A with F = 6. Bot-
tom: Same but for F = 24

we increase the forcing frequency to be at least 12 for
every amplitudes studied.

- Amplitudes of the forcing inflow does indeed effect
the amplitude of the average vorticity.

- In one period of oscillatory flow, the recirculation
is broke down beyond the step when amplitude is rela-
tively large, 0.75 and 1.0, for all frequencies studied but
recirculation zone still exists for small values of ampli-
tude.

The extension of our numerical study will be ob-
served in cases of higher values of ReD where we con-
centrate on two cases : ReD are 600 and 900. Inter-
esting phenomenon at ReD = 600, Figure 3, bottom,
is that the secondary recirculation zone appears on the
upper wall and at ReD = 900, is that the flow solution
is convectively unstable, [3]. Effects of inflow excita-
tion for various values of A and f to these solutions
will be investigated and numerical results will be re-
ported later.
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Figure 5: Top: Relationship between ωavg and t over
one period for various values of A and F = 24. Bot-
tom: Same but for various values of F and A = 1.
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