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Abstract: - The collective transport of heat in nanofluids confined between two soft parallel walls is studied by 
extensive Brownian-dynamics simulations. We show that the particle interactions mediated by the walls improve the 
spatial order and drastically enhance heat transport.  
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1 Introduction 
 
Nanofluids [1-2] are liquids containing suspended 
nanometer-size solid particles. Many of these colloidal 
suspensions have displayed [1,3-4] an abnormally high 
thermal conductivities that the classical theory of 
effective media [5] fails to explain. These observations 
have caused a strong interest in the scientific community 
(see refs. 6 and 7 for a recent review) because it paved 
the way to a wide variety of applications ranging from 
the transportation and energy production to promising 
fluidic cooling technologies.  Considerable efforts have 
been, since then, devoted both theoretically and 
experimentally, to understand the origin of this 
unexpected result. Today, this remains a challenging 
problem and only partial conclusions have been reached.  
However,  in a recent work Vladkov and Barrat [8] have 
shown that the collective motion of particles plays a 
predominant role in the transport of heat.  
In a numerical work Battacharya et al. [9] used 
Brownian dynamic simulations to investigate heat 
transport in unconfined nanofluids from the self-ordered 
motion of particles. Their model was shown to predict 
qualitatively well the concentration and size dependence 
of the thermal conductivity. In the present paper we 
focus on the collective transport of heat in nanofluids 
confined in quasi-two-dimensional geometries. In such 
configurations, the heat transport mechanisms are more 
complex than in unconfined colloids since the motion of 
particles is also coupled to confining walls. We 
demonstrate by extensive Brownian dynamics 
simulations that the heat transport throughout the self-
ordered motion of particles is more important in these 
geometries than in unconfined nanofluids. We show also 
that this enhancement results from the coupling of 
particles with the walls which considerably increases the 

spatial order of colloids at short range and so promotes 
collective modes.  
 
2 Brownian motion model 
 
Let us start by describing the system we consider in this 
study. It consists on N identical, spherical, Brownian 
particles of radius R dispersed at positions 

1( , ,..., )2 Nr r r between two parallel walls (fig.1) in a 
viscous incompressible solvent made with infinitely 
smaller molecules (i.e. Rrfluid << ).  

 

     
 

Fig. 1 : Snapshot after equilibration of an instantaneous 
configuration for a LJ nanofluid ( nmd  80= ) in a quasi-2D 
channel of height nmh  240= . Lengths have been rescaled 
for readability reasons. 

 
In this system, the short-range repulsive interaction and 
the van der Waals (vdW) attraction between particles i 
and j are modeled  by a truncated shifted and smoothed 
Lennard-Jones (TSSLJ) potential   
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 is a 12-6 LJ potential, 

ijr = −j ir r  stands for the interparticle distance 

while cr , ε  and σ represent the cutoff radius of TSSLJ 
potential and the LJ parameters, respectively.  
All particles interact also with the walls 2/hz ±=  via 
the purely repulsive soft potential (sticking on these 
walls is prohibited) 
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h . Here h is the separation distance 

between the upper and lower surfaces, 
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position where wallu  is minimum. The translational 
dynamic of particles in the host fluid is then described 
by the N-body Langevin equation 

 i ij j i ij jm = − + +&v ξ v F α f ,                                        (3) 

where iv is the linear velocity of the particle i, ξ is the 
(3 3N N× ) friction tensor, iF  is the sum of 
interparticle and wall-particle forces acting in the i th 
particle while jf  represents here a Gaussian field with 

zero mean and covariance 2 ( )i j ij(t) (t ) t tδ′ ′= −f f δ . 

According to the fluctuation disipation theorem [10], 
the  random force jij fα  exerted on the particle by the 
surrounding fluid is related to the friction tensor by the 
relation ( ) 1

ij B il jl
l

k Tξ α α−= ∑ . The system of coupled 

equations (3) might be solved using the Ermak and 
McCammon algorithm [11]  
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where  îδr  denotes the N-correlated displacement 

vector and ijD is the Kirkwood diffusion tensor which 
describes the hydrodynamic interactions in the host 
fluid is related to the friction tensor by the simple 
relation ilB

j
jlij TkD δξ∑ = . In order to satisfy the 

assumptions of Ermak and McCammon algorithm, a 

time step tδ is chosen much smaller than the Brownian 
time (i.e. time necessary for a nanoparticle to move 
through a distance equivalent to its diameter) and much 
greater than the momentum relaxation time (i..e. time 
interval tΔ  beyond which the velocity )( ttvi Δ+  of  a 
particle is uncorrelated with the velocity )(tvi ). In our 
simulations, this condition is always fulfilled because 
there is at least two orders of magnitude between both 
characteristic times. In our simulations, the diffusion 
tensor is approximated by the (positive-definite) Rotne-
Prager expression [12] 
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In this expression η  represents the viscosity of host 

fluid, I  is the unit dyadic tensor and ijr is the vector 
which relates the center of particle j to the center of 
particle i. In order for the dynamics to satisfy the 
fluctuation-dissipation theorem, the stochastic 
displacement vector in relation (4) must verifies the 
supplementary constraints ˆ 0iδ =r and 

ˆ ˆ 2i j ij tδ δ δ=r r D .  

All our simulations are started with an fcc configuration 
and the system is equilibrated with at least 30000 time 
steps. The duration of this equilibration phase is a 
posteriori checked from the relaxation curve of the 
cohesion energy (not plotted here). The transport 
properties are calculated using the linear response 
theory with 1000 supplementary time steps while the 
static structural properties i.e. the pair distribution 
functions, are calculated with at least 50 000 time steps. 
Periodic boundary conditions were applied in the x and 
y directions (Fig.1) and calculations are carried out with 
adimensioned variables built from the following 
references quantities : length 2r R∗ = , temperature 

/ BT kε∗ =  , mass of particles m m∗ = , dynamic 
viscosity 1/ 2 2( ) /(4 )m Rη ε∗ = , time 2 1/ 22( ) /t mR ε∗ =  

and diffusion 2 1/ 22( . / )ijD R mε∗ = . The values of the 
dynamic viscosity, of the temperature, of  the mass 
density of particles and the volume fraction of 
nanoparticles used in our simulations are 

24 ..10159 −−×= msNη  (ethylene glycol viscosity), 
KT 300= , 3.3970 −= mkgρ (aluminum density) and 

%1=φ , respectively. The potential parameters used in 
the present work are TkB5=ε , εε 01,0~ = , 
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d== σσ ~ and σ5,1=cr  while the number N of 
particle is fixed to 108.  
 
3 Lattice thermal conductivity 
 
We now focus our attention on the transport of heat 
from the collective modes of particles, i.e. natural 
phonons, caused by their self-ordered motion in the host 
fluid. In quasi-2D geometries only the longitudinal 
modes are meaningful. Therefore we restrict ourselves 
to the investigation of transport from the longitudinal 
(i.e. in the x-y plane) modes. The longitudinal lattice 
thermal conductivity (LTC) //

Lκ  is calculated from the 
autocorrelation function  )().0()( ////// ttC QQ=  of 

parallel heat flux vector // ( ) [ ( ), , 0]x yt Q t Q=Q  using  
the Green-Kubo formula [13]  
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where V represents the volume of the simulation box. 
The brackets in this expression stand for the statistical 
average of the autocorrelation function. Without 
metastable state (here ergoticity is assured by the 
weakness of short-ranged attractive interactions) the 
statistical averages is identified to the time average over 
the duration of the experiment i.e. 
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the duration of a numerical run. As for the heat flux 
operator, it is calculated from the x-y projection //

iv of 
the particles velocity [ ( ) ( )] /i i it t t tδ δ= + −v r r , the 

particles energy 21( )
2i ij i

j
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interparticle forces ijF  according to [14] 
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In figure 2, we present the evolution of //
Lκ versus the 

separation distance h for different nanoparticle sizes. 
Below a threshold distance (~20 particle diameters), 

//
Lκ  exponentially increases. We see that the LTC  

under confinement is in essential contrast with that 
unconfined nanofluids. An enhancement of one order of 
magnitude is observed when 3/ ≈dh . 
Ultraconfinement (colloidal monolayer)  has not been 
considered in this work for numerical stability reasons. 
However a  linear extrapolation of our results plotted in 
Fig.2  shows that an enhancement of at least  2 orders of 
magnitude can be reached in these configurations. It is 

obviously a direct consequence of  particles coupling 
with the channel walls.  
 

     
 

 
Fig. 2 : Lattice thermal conductivity enhancement of LJ 
nanofluids versus the inter-plate separation distance h. 
Symbol shapes correspond to different particles diameter : 

nm 20  (deltas), nm 50  (circles),  nm 80 (squares).  
 

 
4 Structural order  
 
In order to explain the thermal conductivity 
enhancement highlighted above let us now analyze in 
details the static structure of nanofluids under 
confinement. Based on the simulation data, the pair 
distribution function  

2
1
2

( ) ( + - )
i i j z

Vg
N

σ

δ
≠ Δ <

= ∑∑xy xy xy xy
j ir r r r        (8). 

restricted to the particle position = −xyr r z  in the x-y 
plane is calculated. In homogeneous and unconfined 
nanofluids, the pair distribution function )( xyrg  is 
related to its 3D counterpart 

∑∑
≠

−−=
i ji

iN
Vg )()( j2 rrrδr  by the simple relation  

)()(lim 0 rr xy ggz =→Δ
, since all directions of space are 

statistically equivalent.  
In figure 3 the calculated values of )( xyrg  shows that, 
the confinement affects the spatial correlation of 
particles both at short and long distance. Close to 
contact (r d~ ), the height of the first peak of 
correlation increases compared to that observe in the 
bulk system (i.e. periodic boundary conditions in the 
three directions of space) meaning so that the presence 

)( mμ
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of solid walls improves the structural order at short 
distance. At long range an another interesting structural 
order appears in many situations. For sufficiently large 
particle sizes, )( xyrg  slightly oscillates with a period 
approximately twice equals to the inter-plate separation 
distance. Moreover, )( xyrg decays to approximately 
1,4 at large distance. This is a clear indication of the 
formation of a high density in the x-y plane under the 
action of wall forces. In contrary, the pair distribution 
function along the z axis (not plotted here) goes below 1 
sufficiently large distances (close to the walls) in 
agreement with the strong inhomogeneity in the 
transversal distribution of particles.  
In addition, because the LTC enhancement takes place 
for any particles size and even it is maximum with the 
smallest particles we may conclude that the 
magnification process highlighted above is closely 
related to short ranged correlations.  
 

     
 
 
Fig. 3 : Pair correlation function in the x-y plane in quasi-2D 
channel ( 3/ =dh ) for different particle diameter d.  
Symbol shapes correspond to different diameters : 

nmd  20=  (deltas), nmd  50=  (circles),  and 
nmd  80=   (squares). The solid line represents the pair 

correlation function of bulk nanofluids (i.e. periodic 
boundary conditions are applied in the three directions of 
space) with particle sizes of nm 20 .  
 
 
These can be analyzed as follow. First of all note that 
the first peak of correlation increases significantly 
(compared to the first peak in the bulk) with the particle 
size meaning that the interactions mediated by the 
confining walls are more positive (i.e. particles drag 
more a given particle in the same direction) when the 

particles size decreases. Such an effect promotes the 
self ordered motion (collective modes) of particles 
while a dual mechanism, i.e. an anti-drag-like 
mechanism [15], would  inhibited the collective motion 
of particles. In addition to the evolution of the 
magnitude of first peaks, we see also that, they  spread 
out, under confinement. This effect is more marked 
when the particle size is small and it increases the  
range of short correlations. This clearly tends to dope 
the thermal conductivity and explains qualitatively well 
the results observed in Fig. 2. 
 
5 Conclusion 
 
In summary,  the confinement has been observed to 
strongly enhance the lattice thermal conductivity of 
nanofluids. This unexpected behavior is due to short 
ranged interactions mediated by the confining walls that 
increase the structural order and improve the self 
ordered motion of particles. These results open  
interesting prospects for the thermal management of  
micro and nanoscales systems. 
However the consequences of confinement on the 
apparent viscosity of nanofluid should be estimated 
before considering furthermore nanofluidic cooling 
devices at these scales. 
The influence of wetting properties on the transport of 
heat in confined systems seems also a promising area 
for future research. 
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