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Abstract: In this article a general class of highly accurate finite difference schemes of arbitrary order with
minimal stencil size (three point), called generalized combined compact differencing method (GCCDM), is
introduced. Details of the derivation of GCCDM for the uniform and non-uniform grid points are presented.
The accuracy analysis of the GCCDM is performed using Fourier analysis and the results are compared with other
high accurate finite difference methods such as super compact finite difference method (SCFDM). Accuracy
analysis shows that the GCCDM in a uniform grid is more accurate than the SCFDM for a given order of
accuracy. In addition, it is shown that the sixth-order and eighth-order combined compact differencing methods
are special cases of the GCCDM.
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1 Introduction
In many numerical simulations of fluid dynamics
problems, especially those possess a wide range of
length and time scales, low-order schemes are not
enough. The compact finite difference schemes, in-
troduced as far back as the 1930s, have been found
simple ways of reaching the objectives of high accu-
racy and low computational cost [1, 2, 3, 4, 5, 6].
Compared with the traditional explicit finite differ-
ence schemes of the same order, compact schemes
have proved to be significantly more accurate with
the added benefit of using smaller stencil sizes, which
can be essential when treating non-periodic boundary
conditions.

In the standard symmetric compact finite difference
methods, such as Pade [4, 6] and super compact finite
difference method (SCFDM) [7, 8] the formulation of
the method for the approximation of the first deriva-
tive includes the function and its odd derivatives and
in a similar manner, the formula of the method for
the approximation of the second derivative includes
the function and its even derivatives. But it is possi-
ble to derive another class of symmetric compact fi-
nite difference schemes that their formulation can be
used to approximate the first and second derivatives
simultaneously. Chu and Fan [9] in 1998, presented
a three-point sixth-order (and also eighth-order) com-
bined compact scheme and showed that their method
has better resolution characteristics than other (com-
pact and non-compact) schemes. A similar class of
schemes was developed by Mahesh [10] which he
called them coupled-derivative (C-D) methods.

In this article, the idea of using both odd and even
derivatives as unknowns in the formulation of a com-
pact finite difference scheme, is used to introduce
a general class of highly accurate finite difference

schemes of arbitrary order with minimal stencil size
(three point) for the uniform and non-uniform grid
points. Since the method can be considered as a
generalized form of the current three-point combined
compact methods, it is called Generalized Combined
Compact Differencing Method (GCCDM).

This paper is organized as follows. Section 2
presents the details of the derivation of the GCCDM
in uniform grid. The derivation of the method in
non-uniform grid is described in section 3. Accuracy
analysis of the GCCDM in uniform and non-uniform
grid points is presented in section 4 and finally con-
clusions are given in section 5.

2 Derivation of the GCCDM in Uni-
form Grid

This section is devoted to the derivation of the GC-
CDM in uniform grid points. The GCCDM has two
set of equations namely, basic equations and auxil-
iary equations. These equations are obtained using
the Taylor series. A forward discrete Taylor series
for an arbitrary function, f , in any direction, x, and
in a uniform grid can be written as:

fj+1 = fj + hf ′
j +

h2

2!
f ′′
j + . . . (1)

where h is the grid spacing and the prime denotes
the derivative. By defining a forward operator as
δ+
x fj = fj+1 − fj , equation (1) can be rewritten in

the following form:

δ+
x fj = hf ′

j +
h2

2!
f ′′
j + . . . (2)
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Using the same procedure a similar equation for back-
ward Taylor series can be obtained,

δ−x fj = hf ′
j −

h2

2!
f ′′
j + . . . (3)

where δ−x fj = fj − fj−1. Two basic equations of
the GCCDM are achieved by adding and subtracting
equations (2) and (3) as bellow:

(δ+
x + δ−x )fj =

2
1!

f<1>
j +

2
3!

f<3>
j + . . . +

2
(2M − 1)!

f<2M−1>
j (4)

(δ+
x − δ−x )fj =

2
2!

f<2>
j +

2
4!

f<4>
j + . . . +

2
(2M)!

f<2M>
j (5)

in which f<k>
j = hk

(
∂kf
∂xk

)
j
.

Equations (4) and (5) are the basic equations of
the GCCDM method. It can be seen that the basic
equations relate function f to the higher derivatives.
In these equations the number of unknowns are much
more than equations thus some additional equations
i.e., the auxiliary equations are needed to close the
system. The auxiliary equations are obtained similar
to the basic equations. For each derivative of f (e.g.
lth derivative) the forward and backward discrete Tay-
lor series are written and then similar to the basic
equations are added and subtracted. This procedure
leads to two sets of auxiliary equations as follows:

f<l>
j+1 − f<l>

j−1 =
2
1!

f<l+1>
j +

2
3!

f<l+3>
j

+ . . . +
2

(2M − l)!
f<2M>
j (6)

f<l>
j+1 − 2f<l>

j + f<l>
j−1 =

2
2!

f<l+2>
j +

2
4!

f<l+4>
j

+ . . . +
2

(2M)!
f<2M−1>
j (7)

where l = 1, 2, 3, . . . , M − 1.
Equations (4)-(7) form a (three-point) closed sys-

tem of equations which can simultaneously be used to
approximate the first and second derivatives of f in a
uniform grid with the accuracy of order 2M . Differ-
ent formulations of the method are derived by letting
M = 1, 2, 3, . . .. It can be shown that the particu-
lar cases of the GCCDM are the second-order cen-
tral (M=1), fourth-order compact (M=2), sixth-order
combined compact (M=3) and eighth-order combined
compact (M=4) methods. For example using M = 3

in equations (4)-(7) leads to the following sixth-order
GCCDM relations:

(δ+
x + δ−x )fj =

2
1!

f<1>
j +

2
3!

f<3>
j +

2
5!

f<5>
j

(δ+
x − δ−x )fj =

2
2!

f<2>
j +

2
4!

f<4>
j +

2
6!

f<6>
j

f<1>
j+1 − f<1>

j−1 =
2
1!

f<2>
j +

2
3!

f<4>
j +

2
5!

f<6>
j

f<1>
j+1 − 2f<1>

j + f<1>
j−1 =

2
2!

f<3>
j +

2
4!

f<5>
j

f<2>
j+1 − f<2>

j−1 =
2
1!

f<3>
j +

2
3!

f<5>
j (8)

f<2>
j+1 − 2f<2>

j + f<2>
j−1 =

2
2!

f<4>
j +

2
4!

f<6>
j

In equations (8) it is possible to eliminate some of
derivatives. Therefor, after bypassing some manipu-
lations, the above set of equations can be written in
the form

7
16

(f ′
j+1 + f ′

j−1) + f ′
j −

h

16
(f ′′

j+1 − f ′′
j−1) =

=
15
16h

(fj+1 − f ′
j−1)

9
8h

(f ′
j+1 − f ′

j−1) + f ′′
j − 1

8
(f ′′

j+1 + f ′′
j−1) =

=
3
h2

(fj+1 − 2f ′
j + f ′

j−1) (9)

which are the sixth-order combined compact relations
derived by Chu and Fan [9]. Equations (8) or (9) can
be used to discretize a governing equation containing
the first and second derivatives, in a uniform grid,
with periodic boundary conditions. It is clear that
using the second form of the equations (9) needs less
computational cost.

In general, when the GCCDM relations are used
to discretize a problem with periodic boundary condi-
tions, additional relations are not needed. Application
of the GCCDM scheme to problems with non-periodic
boundary conditions, needs forward and backward
equations in boundaries. These two-point relations
(with the same order of the accuracy of the central
equations) are derived similar to those obtained for the
super compact finite difference method (SCFDM) [8].
It should be noted that these forward and backward
relations only can be used with the original form of
the GCCDM relations [i.e. equations (4)-(7)]. The
boundary relations for the second form of the scheme,
e.g. sixth-order equations (9), in non-periodic do-
mains can be determined by following the procedure
given by Chu and Fan [9]. These boundary equations
has less order of accuracy than the central relations.
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3 Derivation of the GCCDM in Non-
uniform Grid

In this section a more general form the GCCDM rela-
tions in non-uniform grids is presented. These equa-
tions can be derived similar to the uniform equations
by using the Taylor series in a non-uniform grid. The
forward and backward discrete Taylor series can be
written as

δ+
x fj = hjf

′
j +

h2
j

2!
f ′′
j + . . .

δ−x fj = hj−1f
′
j −

h2
j−1

2!
f ′′
j + . . .

in which hj = xj+1 − xj .
Therefor, the basic equations of the GCCDM in

non-uniform grid can be derived as

δ◦xfj = (1 + σj)f<1>
j +

1
2!

(1− σ2
j )f

<2>
j +

. . . +
1
N !

[1 + (−1)N+1σN
j ]f<N>

j (10)

δ2
xfj = (1 − σj)f<1>

j +
1
2!

(1 + σ2
j )f<2>

j

+ . . . +
1

N !
[1 + (−1)NσN

j ]f<N>
j (11)

and the auxiliary equations can be found as bellow

δ◦xf<l>
j = (1 + σj)f<l+1>

j +
1
2!

(1− σ2
j )f

<l+2>
j

+ . . . +
1

(N − 1)!
[1 + (−1)NσN−1

j ]f<N>
j (12)

δ2
xf<l>

j = (1 − σj)f<l+1>
j +

1
2!

(1 + σ2
j )f

<l+2>
j

+ . . . +
1

(N − 1)!
[1 + (−1)N−1σN−1

j ]f<N>
j (13)

where l = 1, 2, 3, . . . , N/2− 1 and

δ2
x = δ+

x δ−x = δ−x δ+
x , δ◦x = δ+

x + δ−x

σj =
hj−1

hj
, f<k>

j = hk
j

(
∂kf

∂xk

)
j

Equations (10)-(13) form the general formulation of
the GCCDM in a non-uniform grid for the approx-
imation of the first and second derivatives with the
accuracy of order N .

Introducing the vectors

F =
{
f<1>, f<2>, f<3>, . . . , f<N>

}T
,

E =
{
δ◦x, δ2

x, 0, 0, . . . , 0
}T

and the matrices

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+σ
1!

1−σ2

2! . . . 1+(−1)N+1σN

N !
1−σ
1!

1+σ2

2! . . . 1+(−1)N σN

N !

0 1+σ
1! . . . 1+(−1)NσN−1

(N−1)!

0 1−σ
1! . . . 1+(−1)N−1σN−1

(N−1)!

0 0 . . . 1+(−1)N−1σN−2

(N−2)!

0 0 . . . 1+(−1)N−2σN−2

(N−2)!

0 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0

−δ◦x 0 . . . 0
−δ2

x 0 . . . 0
0 −δ◦x . . . 0
0 −δ2

x . . . 0
0 0 . . . 0
0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Equations (10)-(13) can be rewritten into a vector
form and the following relation is achieved

(Q + L)Fj = Efj (14)

L and Q are N × N matrices and F and E are
N dimensional vectors. It is clear that by choosing
σj = 1 and doing some modifications, equation (14)
will transform to the vector form of the GCCDM in
uniform grid.

4 Accuracy Analysis
In this section the results of the accuracy analysis of
different orders of the GCCDM relations as well as
the comparison with other high accurate finite dif-
ference methods such as SCFDM, is presented. The
accuracy analysis in uniform and non-uniform grids is
performed using the Fourier analysis [6, 11]. A single
Fourier mode is chosen for the Fourier analysis

fj = exp(iωs), s =
xj

hj
, i =

√−1 (15)

where ω is the wave number.
In the present paper only the results of the Fourier

are given, the details of the application of the Fourier
analysis in uniform and non-uniform grids can be
found in references [6, 11] and [12].

Figures 1 and 2 present the comparison of the mod-
ified wave numbers of the first and second derivative
approximations for different orders of the GCCDM
and SCFDM in a uniform grid. Accuracy analysis
shows that the GCCDM in a uniform grid is more ac-
curate than the SCFDM for a given order of accuracy
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and also has better resolution characteristics. Bet-
ter accuracy of the GCCDM respect to the SCFDM
shows that the GCCDM can perform better resolution
characteristic than any current (three-point compact
and non-compact) schemes.
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Figure 1: The modified wave number of the first
derivative approximation in a uniform grid: (a) sixth-
order SCFDM, (b) sixth-order GCCDM, (c) eighth-
order SCFDM (d) eighth-order GCCDM, (e) tenth-
order SCFDM, (f) tenth-order GCCDM, (g) exact dif-
ferentiation.

The comparison of the modified wave numbers of
the first and second derivative approximations of the
sixth-order formulation of the GCCDM and SCFDM
schemes in a non-uniform grid for different grid as-
pect ratios (k = hj/hj−1 = 1/σj) are given in fig-
ures 3 and 4. Figures 3 and 4 show that the GCCDM
is more accurate than the SCFDM in non-uniform grid
points. Furthermore, this accuracy analysis of the GC-
CDM in a non-uniform grid shows that the GCCDM
is less sensitive to the grid aspect ratio respect to the
SCFDM and produces less errors especially for the
large wave numbers.

As numerical examples the GCCDM has been ap-
plied to spatial differencing of some prototype linear
and nonlinear geophysical fluid dynamics problems
(e.g. the shallow water equations) and the results
show that the GCCDM offers a promising compact
finite difference method to implement in numerical
simulation of fluid dynamics problems. Because of
the page limits, these results are not presented in this
article and will be reported elsewhere.

Wave number (w)

M
od

if
ie

d
w

av
e

nu
m

be
r
(w

’’
)

0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

Second derivative approximation

a
c

e

b

d

f
g

Figure 2: The modified wave number of the second
derivative approximation in a uniform grid: (a) sixth-
order SCFDM, (b) sixth-order GCCDM, (c) eighth-
order SCFDM (d) eighth-order GCCDM, (e) tenth-
order SCFDM, (f) tenth-order GCCDM, (g) exact dif-
ferentiation.
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Figure 3: The modified wave number of sixth-order
approximation of the first derivative in a non-uniform
grid: (a) SCFDM in uniform grid (k = 1), (b) GC-
CDM in uniform grid (k = 1), (c) SCFDM in non-
uniform grid with k = 1.05, (d) GCCDM in non-
uniform grid with k = 1.05, (e) SCFDM in non-
uniform grid with k = 1.2, (f) GCCDM in non-
uniform grid with k = 1.2, (g) exact differentiation.

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp160-164)



Wave number (w)

M
od

if
ie

d
w

av
e

nu
m

be
r
(w

’’
)

0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

11

Second derivative approximation

a

b

c

d

e

f

g

Figure 4: The modified wave number of sixth-order
approximation of the second derivatives in a non-
uniform grid: (a) SCFDM in uniform grid (k = 1),
(b) GCCDM in uniform grid (k = 1), (c) SCFDM
in non-uniform grid with k = 1.05, (d) GCCDM
in non-uniform grid with k = 1.05, (e) SCFDM in
non-uniform grid with k = 1.2, (f) GCCDM in non-
uniform grid with k = 1.2, (g) exact differentiation.

5 Conclusion
The formulation of a three-point highly accurate fi-
nite difference method, called generalized combined
compact differencing method has been presented. The
method can be used for the approximation of the first
and second derivatives as well as using for the solu-
tion (discretization) of fluid dynamics problems, with
any order of the accuracy in uniform and non-uniform
grid points. The idea of the GCCDM and its deriva-
tion procedure can be used to obtain the corresponding
relations for the staggered grids (which have not been
presented in this article).

Fourier analysis indicates that the GCCDM is more
accurate and has better resolution characteristics than
any current three-point scheme, such as the SCFDM,
with the same order of the accuracy. In addition the
Fourier analysis of the method shows that the GC-
CDM is less sensitive to the grid aspect ratio than the
SCFDM, in non-uniform grids.

What is certain is that the GCCDM offers a promis-
ing finite-difference method to implement in numer-
ical simulations of the fluid dynamics (and other
branches) problems. It combines high accuracy over a
great part of spectral space with low cost and minimal
stencil size. It involves only inverting block three-
diagonal matrices whose computational cost depends
linearly on spatial resolution.
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