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Abstract: The drainage of the precorneal tear film in humans is studied. A fluid dynamic model for the 

drainage of the aqueous layer is developed that includes rheological effects. The Ostwald de Waele type 

power law model is employed to model the tear film. The nonlinear evolution equation for the film is 

formulated using the balance equations including a body force term due to van der Waals molecular 

attractions, lubrication theory and perturbation expansion method. The governing equation was solved 

by Lax-Wendroff finite-difference technique as part of an initial value problem for spatial periodic 

boundary conditions. The results indicate that the rheological effects of the tear film fluid affect the film 

drainage process and therefore be included in models for tear film damage.  
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1. Introduction 
 

The human tear film is described as 

consisting of three distinct layers. A mucous 

layer lies on top of the epithelial cells of the 

cornea; an aqueous layer is present above the 

mucus layer and a lipid or fatty layer covers the 

aqueous layer. When the lids close, the lipid 

layer is compressed between the lid edges and 

its thickness increases. When the lids are half 

closed, the lipid layer is thick enough to exhibit 

interference colors. When the lids are 

completely closed, the liquid layer is about 0.1 

micrometers thick. This is thin enough for the 

lipid layer to remain confined between the lid 

edges; consequently, lipid epiphora does not 

occur. It is important to note that in normal 

eyes, the lipid layer does not penetrate under 

the lids during blinking. The aqueous tear layer 

contains electrolytes, enzymes and various 

other proteins and glycoproteins. The ocular 

Surface, often referred to as the mucin layer, is 

about as thick as the superficial lipid layer and 

does two things: 

i. makes the surface lacrophillic  and 

ii. maintains this lacrophilicity by masking 

entrapped lipid molecules. 

Due to the small thickness of the tear film (10 

micrometers, about 1/5
th
 of the diameter of a 

strand of hair) the following things are true: 

1. The tear film can only remain continuous if the 

ocular surface is and remains lacrophilic. More 

accurately, the film energy (sum of the energies 

associated with its outer and inner boundaries) 

has to be less than free energy of the ocular 

surface. In the eye this is achieved by lowering 

the energy (tension) at the mucin/aqueous tear 

interface and lowering the energy (tension) of 

the superficial lipid layer (mucin-lipid 

interaction) so the sum of these two is 

minimized.  

2. Gravitational forces on such a thin film are 

negligible when compared to surface forces. 

This is why tear film does not flow downward 

when one is standing. However, the normal tear 

meniscus is deep enough for hydraulic (gravity-

driven) flow to take place. 

The viscosity of aqueous tears is only 

slightly higher than water which allows the tear 

layer under the lipids to perform as an excellent 

lubricating layer during blinking. During 

blinking, only the superficial lipid layer is 

eliminated. The aqueous tear layer remains 

under the lid where it is bound on both sides by 

the conjunctiva (and at one location by the 

cornea) in the closed eye. It provides 

hydrodynamic lubrication as long as it remains 

stable. When the eye lids are lax and floppy, or 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp41-47)



where the globe (cornea) and lid congruity is 

compromised, problems can arise. As the eye 

lid opens, the lipid layer spreads upward. 

Underneath the forming lipid layer the 

associated sialo-mucin also spreads upward 

thereby further stabilizing the lipid layer. This 

process thickens the tear film somewhat and it 

is completed in about one second. The tear film 

thickening process is governed by the tear 

meniscus which serves as a reservoir. The 

superficial lipid layer retards evaporation and 

protects the tear film from the invasion of the 

skin lipids (highly polar, they would be capable 

of rupturing the tear film and de-wetting the 

eye) contributing to stability by providing a low 

energy surface. Even in the normal open eye 

some of the lipid molecules will migrate to the 

mucin layer thereby corrupting its 

lacrophilicity. Due to the lipid-masking ability 

to mucin, considerable amount of lipid is 

needed to achieve lacrophilicity. The speed of 

the process depends on the tear film thickness. 

When one omits blinking (e.g. during staring) 

the tear film will eventually rupture forming dry 

spots at several locations thereby irritating the 

eye. Blinking rejuvenates the lacrophilicity of 

the ocular surface and removes heavily 

contaminated mucin, usually in the form of 

threads, to the lower formix. Thus, dry spot 

formation can happen in people with healthy 

eyes and normal tear film. All it takes is to 

refrain from blinking for more than 30 seconds 

or even a minute or two. It depends also on the 

environment. Turbulent, relatively dry air (air 

condition, on air planes) will accelerate the 

process. 

Dry eye occurs because the ocular surface 

becomes lacrophobic, compromising the tear 

film’s stability. The cause of the rupture of the 

tear film, often at several locations, is due to 

local nonwetting. If the tear film ruptures 

before the next blink and this happens 

repeatedly, the demise of the surface epithelium 

commences. An important quantitative clinical 

tool used by othalmologists to quantify dry eye 

conditions is the tear film break up time (BUT). 

The breakup of the tear film was first explained 

based on mucus interface due to the surface 

tension gradient driven motion called as the 

Marangoni effect, disrupting the mucin layer 

function of enhancing the wetting of corneal 

surface and consequently creating a highly 

hydrophobic surface [1]. The resulting 

distribution of lipids over the aqueous-mucus 

interface increases aqueous-mucus interfacial 

tensions, as the lipids are much less surface 

active than the mucus covering the epithelium, 

contributing stability to the tear film [2]. 

Furthermore, the Marangoni flow induces 

convective diffusion, preventing molecular 

diffusion of lipids to the corneal epithelium [3]. 

A Marangoni flow driven by mucin 

concentration was proposed, but is physically 

less likely in the presence of surface-active 

agents. Sharma and Ruckenstein [4] argued that 

the mucus is unstable due to the long range 

intermolecular dispersion.  

2. Analysis 

 

 We consider the flow of a thin liquid film 

along a horizontal cylinder. We assume the 

characteristic thickness of the film to be ho and 

the length scale parallel to the film to be L. The 

aspect ratio is given by ζ=ho/L. If assume that 

ζ« 1, we have a thin film. Assuming that the 

liquid is a power law fluid (Ostwald de Waele 

type), we may write: 

ij
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=                               (1) 

where   τij  is the stress tensor,    γij  is the rate of 

strain tensor, n is the power-law exponent, and 

m is the viscosity index. We now use the 

following length scales: 

Time: 

)2/(1 −

























n

m

n
oh

oh
ρ  

Length:   [ h0 ] 

Velocity (Uo):  
)2/(1 −


























n

m

n
ohρ  

Pressure and stress:  

)2/(2 −


























n

m

n
ohρρ  

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp41-47)



 
Fig.1. Flow model for the thin film flow. 

 

The liquid layer is assuming thin enough that 

van der Waals forces are effective           and 

thick enough that a continuum theory of liquid 

is applicable. Figure 1 shows the geometry of 

the eye. The dimensionless equation of mass, 

momentum, angular momentum equations are 

given by: 
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In above dimensionsless equations, u and v 

represent the velocity components in x and y 

directions respectively, p the pressure and Ψ the 

potential function describing the van der Waals 

forces. We follow William and Davis [8] and 

write a modified expression for Ψ: 

cAh−=ψ        (5)                                                                      

where c = 3 is usually used. 

In equation (5), the van der Waals forces are 

represented through the potential function Ψ 

and A’ is the dimensional Hamaker constant. A 

is related to the Hamaker constant A’ as  
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The boundary conditions along the solid plane 

wall are given by 

0:0 === vuy    (7) 

 At the fluid interface, we have the Kinematic 

condition: 
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The continuity of tangential stress on the 

interface requires 
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The continuity of normal stress at the interface 
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dimensionless surface tension. Our aim here is 

to solve for the stability of the liquid film while 

including the effect of van der Waals forces. 

  

 We now apply long wave theory to study 

the stability problem. When the layer is thinner 

than critical value, small disturbances begin to 

grow. These waves have wavelengths much 

larger than the mean thickness of the layer. 

Defining a small parameter к that is related to 

wave number of such disturbances, we may 
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rescale the governing equation by the order of 

magnitude considerations: 

xX κ= ; yY = ; t4κτ = ; ψκψ 2

0

−=  

uU 3−= κ ; vV 4−= κ ; pP 2−= κ                                                        

(12) 
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We now assume the following expansion for 

the flow field: 
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The governing equation and the corresponding 

boundary conditions for the zero-order problem 

may be written as 
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The boundary conditions are given by 
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The solutions for the velocity field are given 

by: 
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Similarly, expressions u1, v1, and p1 may be 

derived. These expressions are not used in the 

computations and they are very long. Therefore, 

they are not reproduced here. Using equations 

(14)-(22) and ignoring the curvature effect, we 

may show that the leading order evolution 

equation for the film rupture is given by: 
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subject to initial conditions: 

  )()0,( xfXh =      (24)                                           

Equation (23) governs long wave interfacial 

disturbances to the static film (having h=1) 

subject to van der Waals attractions. 

 

3. Results and Discussion 

The nonlinear partial differential equation 

(23) was solved numerically using an explicit 

marching numerical scheme. Central 
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differences were used for space variable and the 

midpoint rule was used for time. The resulting 

system of difference equations was solved by 

the Lax-Wendroff technique.  The Lax-

Wendroff technique is an explicit, finite-

difference method particularly suited to 

marching solutions. The problem was treated as 

an initial value problem with spatial periodic 

boundary conditions within the interval 0 < Χ< 

2π/q. In order to obtain a solution independent 

of the grid size, several computational runs 

were performed to seek the optimum step sizes 

for X and τ. The optimization procedure of the 

grid size includes computing the spatial film 

thickness distribution at an arbitrary time, 

employing a given number of grid points in 

spatial direction. After that, the number of grid 

points was increased gradually, each time; a 

computer run was performed to compute the 

film thickness profile. The procedure was 

continued until the absolute value of the 

difference in film thickness between two 

successive computer runs approached a value 

less than or equal to 10
-6
. At this point, the 

spatial grid size was fixed. A similar procedure 

was followed to choose the optimum value for 

the time step. As a result of these computations, 

we used spatial grid points N=50 and time step 

∆τ =0.001 in all the computations. 

 

The initial condition was given by: 

 h(X,0) =1 +B Sin(qX)    (25) 

We treated B, n, A and S as independent 

parameters. Figure 2 shows the initial 

disturbance introduced and the film profile at 

the time of film rapture. The break up area is 

larger in the case of the thicker film (c=4) at 

rupture time. Figure 7 shows the timewise 

variation of the minimum film thickness. At a 

given time, the minimum film thickness 

increases as n decreases. For pseudoplastic 

fluids, the film thickness is higher than the 

Newtonian case. For dilatant fluids, the film 

thickness is less than the Newtonian case. 

Figure 4 shows the rupture time versus the 

wave number of disturbance q. As the power 

law exponent for viscosity, “n” decreases, the 

rupture time increases at a given wave number 

of disturbance. The wave numbers of these 

most unstable modes are close to 1/ 2
0.5
. Figure 

3 shows the variation of rupture time decreases 

as the disturbance amplitude increases. The 

results of Williams and Davis [8] and Sharma 

and Ruckenstein [5] are also displayed in 

Figure3. The agreement between our results and 

the published results is satisfactory. 

Figure 2: Film Thickness Distribution at 

the Rupture Time. 

  

 
Figure 3: Minimum Film Thickness VS. Time. 

 
Figure 4:  Rupture Time VS. q. 
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Figure 6 shows the results for rupture time in 

seconds as the initial amplitude of the 

disturbance B increases. We note that for 

pseudoplastic fluids (the power law index in 

less than 1); the rupture time is higher than the 

Newtonian fluid case at a given initial 

disturbance. Figure 5 shows the variation of the 

rupture time in seconds versus A. The rupture 

time decreases as A increases for a given type 

of viscosity power law index of the non-

Newtonian fluid. As the value of “n’ decreases, 

the rupture time increases. 

 

The model proposed in this paper does not 

take into account of the liquid film evaporation 

due to heat conduction from the corneal surface 

to the outer film interface or convective heat 

transfer from the ambient air above the 

saturation temperature at the interface. This will 

be undertaken in a future publication.  

 

4. Conclusions 

 

 In this paper, we have investigated the 

rupture of a thin tear film. The Ostwald-de-

Waele type power law model is employed for 

the mucous rheology. The van der Waals 

dispersion forces were included in the 

momentum equation. A nonlinear equation was 

derived for the tear film thickness based on 

lubrication approximation and long wave 

theory. Numerical solutions were obtained for 

the film thickness for a range of values of the 

Hamaker constant and power law exponent. 

The results indicate that the rheological 

properties, interfacial tension and the initial 

disturbance amplitude have significant effect on 

tear film rupture. Film rupture may be delayed 

by using anti-surfactant which increases the 

aqueous-mucus interfacial tension. 

 We have assumed that evaporation is 

minimal so that dry eye is caused by tear film 

volume deficiency. We plan to explore 

scenarios when evaporation is suspected of 

contributing to dry eye. This will be reported in 

a future publication. 

 Significant three dimensional flow effects 

occur in real eyes. The aqueous tear supply 

enters from the lacrimal glands at the top, outer 

part of the eye, and the tear film drains out at 

the bottom of the eye. The methodology 

presented in the paper could be used to examine 

tear film evolution in the presence of contact 

lens. Research into the effect slip on the tear 

film rupture time will be the subject of future 

work. Recent experimental evidence has 

suggested that the no slip condition may not be 

suitable for hydrophilic flows over hydrophobic 

boundaries at the micro and nano scales. 

 

 

Figure 5: Ratio of Nonlinear to Linear 

Rupture Times VS. B 

Figure 6: Rupture Time VS. B 
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Figure 7: Rupture Time Versus A 
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