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Abstract: - A two-dimensional numerical analysis of the vaneless diffuser core flow, where the influence of 

the wall boundary layers is neglected, is performed to investigate the rotating stall instability. A commercial 

code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow 

in the plane parallel to the diffuser walls. At the diffuser inlet a rotating jet-wake velocity pattern is prescribed, 

and at the diffuser outlet a constant static pressure is assumed. With this model a two-dimensional rotating 

instability was obtained, which is associated with the rotating stall instability in wide vaneless diffusers. In this 

paper it is shown that the number of rotating cells is dependent of the diffuser geometry, and that the 

maximum number of rotating cells observed in the vaneless diffuser space can be estimated. This two-

dimensional numerical model is compared with the two-dimensional inviscid flow model of the vaneless 

diffuser rotating stall based on instability analysis. Similar results are obtained with both models for the 

critical flow angle, number of rotating cells and their propagation speed. 
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1   Introduction 
     The performance of centrifugal compressors at 

low mass flows is characterized by the occurrence of 

unsteady flow phenomena. Rotating stall is an 

instability with strong dynamical loading on the 

blades that can cause damage and noise nuisance. 

Therefore, it can not be tolerated during compressor 

operation. Limited compressor operating range is 

paid with the loss of high-pressure ratios. To 

increase the efficiency of compressors, a lot of effort 

is made to postpone the unsteady flow phenomena 

as much as possible. In order to increase the region 

of operation of centrifugal compressors the 

understanding of rotating stall flow dynamics is 

required. 

     This paper deals with the study of rotating stall 

instability within the vaneless radial diffusers. In [1-

3] was found that vaneless diffuser performance is 

different for narrow and wide diffusers, and it is 

clearly suggested that different flow mechanisms 

might exist that can lead to the occurrence of 

rotating stall. Generally, one mechanism is 

associated with the two-dimensional core flow 

instability occurring in wide vaneless diffusers when 

the critical flow angle is reached, and the other 

mechanism is associated with the three-dimensional 

wall boundary layer instability occurring in the 

narrow diffusers. 

     A lot of experimental work is performed a.o. by 

[1-6], showing significant influence of the diffuser 

geometry on the vaneless diffuser performance, and 

also many analytical methods and theories are used 

to study the rotating stall phenomenon.      

     In the literature, different approaches have been 

used to investigate the rotating stall phenomenon in 

the vaneless radial diffusers. For example, the three-

dimensional approach was applied by [7-10]. They 

generally hold the effect of the three-dimensional 

wall boundary layers near the diffuser walls 

responsible for the occurrence of rotating stall. On 

the other hand, [11-13] have used a two-dimensional 

approach where the effect of the wall boundary 

layers is not taken into account. They have applied a 

two-dimensional inviscid flow analysis to study the 

vaneless diffuser rotating stall. These studies suggest 

the existence of a two-dimensional core flow 

instability at the onset of rotating stall in the 

vaneless diffusers. 

     In this research, rotating stall instability is 

investigated from the point of view that it is a two-

dimensional core flow instability. To reveal its flow 

dynamics a two-dimensional numerical model is 

made using the incompressible viscous flow model. 

The two-dimensional rotating instability similar to 

rotating stall is found, which is shown in [14] where 

the behavior and characteristics of this instability are 

presented.  
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     In the first part of the paper, the numerical model 

is briefly described and the results for different 

radius ratios are presented. It is shown that the 

occurring number of rotating cells depends on the 

diffuser radius ratio and circumference. In the 

second part of the paper, the numerical model results 

are compared with results of the two-dimensional 

inviscid flow analysis performed by Tsujimoto et al. 

[13]. Here, it is shown that the two models are in 

good agreement. Overview of the used symbols and 

indices throughout the paper is given in table 1. 

 

Table 1: Used symbols and indices 

Notation Definition 

A 

D  

j 

L 

m 

N  

r 

R  

t 

u  

v 

V 

Y 

amplitude 

constant for function steepness 

imaginary number 

diffuser length 

number of rotating cells 

number of impeller blades 

radius 

outlet-to-inlet radius ratio 

time 

radial velocity 

tangential velocity 

absolute velocity 

defined parameter 

Greek Letters Definition 

α 

Ω 

θ 

σ 

ω 

flow angle 

impeller speed 

circumferential position 

constant factor 

angular velocity 

Subscripts Definition 

cr  

i  

m  

s  

tip  

2  

3  

critical 

impeller 

mean 

stall 

impeller tip 

diffuser inlet 

diffuser outlet 

 

 

2   Numerical model 
To study the core flow instability in the vaneless 

radial diffuser, a two-dimensional viscous flow 

model of the plane parallel to the diffuser walls was 

developed. Here, the influence of the wall boundary 

layers was not taken into account, and no diffuser 

width was modeled. 

 

2.1 Modeling aspects 
At the diffuser outlet a constant static pressure is 

prescribed, assuming that the diffuser exit is 

connected to the space with constant pressure. At the 

diffuser inlet a clockwise rotating jet-wake pattern is 

specified. The tangential velocity component of the 

jet-wake pattern is constant around the 

circumference, and is related to the impeller tip 

speed as follows:  

 

tipvv ⋅= σ ,     (1) 

 

where v  is the tangential velocity component, tipv  

the impeller tip speed and σ  a constant equal to 0.9. 

The radial velocity component of the jet-wake 

pattern at the diffuser inlet is described by the 

periodic hyperbolic tangent function:  

 

( )
( )D

YD
Auu m

tanh

tanh ⋅
⋅+= ,   (2) 

 

where u  is the radial velocity component, mu  the 

mean radial velocity, A  the amplitude and D  a 

constant indicating the steepness of the jet-wake 

function. The circumferential position θ  and the 

impeller angular velocity iω , are defined within the 

parameter Y :  

 

( )tNY i ⋅+⋅= ωθsin     (3) 

 

where t  is the current time and N  the number of 

jet-wakes around the circumference, which 

corresponds to the number of impeller blades.  

     The reference geometry and the operating 

conditions of the vaneless diffuser model are 

obtained by scaling the existing air compressor 

configuration at the near stall operating conditions, 

which is explained in [14]. The applied reference 

conditions of the vaneless diffuser are: 23 rr  = 

1.52, N  = 17, µρ tipvr ⋅⋅= 2Re  = 2.78 · 10
6
, 

mtip uv  = 9.3, the jet-to-wake circumferential 

extent ratio equals 1 and the jet-to-wake radial 

intensity ratio equals approximately 5.5. 

     To perform the numerical analysis, a commercial 

software package FLUENT was used. Here, the 

governing integral equations for the conservation of 

mass and momentum are solved using the finite-

volume approach. For discretization of the time-

dependent terms the second-order implicit time 

integration is used, and for convection terms the 

QUICK scheme is used, as proposed in [15]. 

     Although the studied flow is turbulent, the 

incompressible viscous flow model, with no eddy 
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viscosity but only molecular viscosity, is used. The 

current turbulence models are avoided because of 

the excessive numerical dissipation effect within 

these models. It is assumed that the two-dimensional 

core flow instabilities have the length scale of the 

prescribed jet-wake pattern at the diffuser inlet. 

Since turbulence models capture the diffusion-like 

character of turbulent mixing, associated with many 

small eddy structures, they damp out the solutions of 

large eddy structures like this one. 

     To mesh this geometry a simple two-dimensional 

quadrilateral grid consisting of 750 by 62 elements 

is applied. The performed calculations are unsteady 

and the convergence criterion of 10
-3

 , which is 

satisfied at each time step, is applied to the 

continuity, x-velocity and y-velocity residual. 

 

2.2   Results 
Using this numerical model, a two-dimensional 

rotating instability is obtained that is very similar to 

rotating stall. In figure 1 the transition from the 

stable operating flow condition into the fully 

developed two-dimensional rotating instability is 

shown. This transition is achieved by gradually 

decreasing the mean radial velocity, which 

corresponds to the decrease of the mass flow rate 

through the diffuser. The numbers #1 - #8 indicate 

the successive order of the pictures. 

     When the mean flow angle mα , defined as 

( )vumm

1tan −=α , is large, the stable operating 

flow condition consists of a prescribed jet-wake 

pattern at the diffuser inlet and equally distributed 

alternating pattern near the diffuser outlet. The 

stable operating flow condition is given by image #1 

in figure 1.  The alternating pattern near the diffuser 

outlet consists of the alternating outward and 

reversed flow areas. The number of these regions 

exactly corresponds the number of prescribed jet-

wakes at the diffuser inlet. 

     Figure 1 shows that the instability occurs when 

the mean flow angle at the diffuser becomes very 

small. When the mean flow angle becomes small, 

the jet-wake flow entering the diffuser space 

becomes able to pas underneath the alternating 

pattern near the diffuser outlet. This makes that the 

alternating pattern areas become unequal in size, 

which results in initiation of the two-dimensional 

rotating instability. This two-dimensional rotating 

instability fully develops within four to eight 

impeller revolutions, and it consists of a certain 

number of rotating cells that propagate with a 

fraction of the impeller speed. For the reference 

diffuser geometry and operating flow conditions it is 

found that 7 rotating cells occur when the instability 

is fully developed. These cells propagate with 

approximately 40 % of the impeller speed. In the 

absolute frame of reference, the rotating cells 

propagate in the same direction as the rotation 

direction of the impeller. Besides these similarities 

with the rotating stall, based on the instability 

characteristics, the numerical results also agree well 

with the measurements found in the literature for the 

same type of diffusers, which is shown in [16]. 

Because of the similarity with the rotating stall 

phenomenon and good agreement with the 

measurements found in the literature, it is believed 

that this instability might contribute to the vaneless 

diffuser rotating stall. 

 

 
Fig.1: The development of the instability 

ααααm = 10.7 º 

ααααm = 3.9 º ααααm = 5.4 º 

ααααm = 5.9 º ααααm = 6.3 º 

ααααm = 6.7 º ααααm = 7.2 º 

ααααm = 7.4 º 
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# 4 
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# 5 # 6 
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     To investigate the influence of the diffuser radius 

ratio, 23 rrR = , on the two-dimensional rotating 

instability, the diffuser outlet radius is varied while 

the inlet radius remained unchanged. The diffuser 

radius ratios of 1.2, 1.52 and 2.0 were investigated. 

In figure 2, solutions of the stable and unstable 

operating flow condition are given, corresponding to 

the three different diffuser radius ratios. Figure 2 

shows that not only the number of rotating cells but 

also their size changes as the diffuser radius ratio is 

varied. The number of rotating cells decreases with 

increasing diffuser ratio, while the size of the cells 

increases. 

     This influence of the diffuser radius ratio can be 

explained as follows. As the diffuser radius ratio 

increases, the diffuser length, 23 rrL −= , becomes 

larger, which allows the cells to become larger in 

their radial extent. It seems that the circumferential 

and radial extent of the rotating cells tend to be 

proportional, which means that the diffuser length is 

most likely the determinative parameter for the size 

of the rotating cells. 

 

 
Fig.2: Influence of the diffuser radius ratio 

 

     Since the size of the rotating cells is most likely 

defined by the diffuser length, the maximum number 

of the cells is then probably defined by the diffuser 

circumference. The number of cells of a given size 

that fits into the diffuser is most likely limited by its 

circumference. Therefore, the maximum number of 

the cells, occurring when the two-dimensional 

rotating instability is fully developed, can be 

estimated by half the ratio between the 

circumference and the diffuser length: 

 

( )

23

23

2

1

rr

rr
m

−

+⋅
⋅=
π

    (4) 

 

Because each rotating cell is accompanied by an 

additional vortex of the opposite rotation direction 

and of approximately the same size, this needs to be 

included in the estimation. In order to take the space 

between the rotating cells into account, the ratio 

between the circumference and the diffuser length is 

divided by factor 2.  

     Using equation (4), the maximum number of 

rotating cells that can occur in the vaneless diffusers 

of radius ratio 1.2, 1.52 and 2.0 is estimated to be 

17.3, 7.6 and 4.7 respectively. Since the value of m 

is an integer number, the estimated number of 

rotating cells for the diffuser radius ratios of 1.2, 

1.52 and 2.0 is adapted to 17-18, 7-8 and 4-5 

respectively. In figure 2 it is shown that m = 13 for 

R = 1.2, m = 7 for R = 1.52 and m = 4 for R = 2. 

With this observation it seems that the maximum 

number of rotating cells is well predicted for R = 

1.52 and R = 2. The obtained number of rotating 

cells for R = 1.2 approaches the estimated value, but 

is not exactly the same. This is probably due to the 

very small distance between the outlet boundary 

condition and the diffuser inlet, which leads to a 

somewhat suppressed solution that makes this 

comparison difficult and uncertain. 

     The observed number of rotating cells in figure 2 

that was compared with equation (4), is in all cases 

the maximum occurred number of rotating cells. The 

maximum occurring number of rotating cells, is 

being considered as a fully developed condition of 

instability. Just after the stability limit is reached, 

the number of rotating cells rapidly grows towards 

the maximum number that fits into the diffuser 

geometry, as shown in figure 1. 

     When continuing to decrease the mass flow rate 

through the diffuser after the maximum number of 

cells is reached, the number of rotating cells starts to 

decrease with further decrease of the mass flow rate. 

This is shown in figure 3, where the numbers #1 - #4 

indicate the successive order of the pictures. This 

stable 

R = 1.2 

stable 

R = 1.52 

stable 

R = 2.0 

unstable 

R = 1.2 

m = 13 

unstable 

R = 1.52 

m = 7 

unstable 

R = 2.0 

m = 4 
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means that the diffuser length is not the only 

parameter influencing the number of rotating cells, 

but it is together with the mass flow rate, decisive 

for the occurring number of rotating cells. 

 

 
Fig.3: Decrease of the number of cells with 

decreasing mass flow rate 

 

     The influence of the diffuser radius ratio on the 

critical flow angle, the number of rotating cells and 

their propagation speed, as obtained by the two-

dimensional numerical model, is given in figures 4 

and 5.  
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Fig.4: Critical flow angle versus radius ratio 

 

The critical flow angle is found to be strongly 

dependent on the diffuser radius ratio. Figure 4 

shows that when the diffuser radius ratio decreases, 

the critical flow angle also decreases and the core 

flow stability of the vaneless diffuser improves. 

Figure 5 shows that not only the number of rotating 

cells but also their propagation speed decreases with 

increasing diffuser radius ratio. In figure 5, the 

maximum occurred number of rotating cells for each 

diffuser radius ratio is connected with a solid line. 

The number of rotating cells obtained when the 

mass flow rate is further decreased, after the fully 

developed condition of instability is reached, is also 

given. The mass flow rate was continuously 

decreased until it has reached the final value of zero. 

The arrows point in the direction of the mass flow 

decrease. Note that for constant diffuser radius ratio, 

the propagation speed of the cells does not change 

with changing number of rotating cells. 
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Fig.5: Number of cells and their propagation speed 

versus radius ratio 

 

 

3   Two-dimensional inviscid model 
Similar model to the numerical model described 

above was developed by Tsujimoto et al. [13]. They 

have performed a linear two-dimensional inviscid 

analysis to study the rotating stall instability in 

vaneless diffuser space. Here, rotating stall is 

studied from the point of view that can be a two-

dimensional inviscid flow instability under the 

boundary conditions of vanishing velocity 

disturbance at the diffuser inlet and of vanishing 

pressure disturbance at the diffuser outlet. It is 

assumed that the flow is inviscid and incompressible 

and that the disturbance is small enough to allow 

linear analysis. 

     In this two-dimensional inviscid flow analysis a 

constant pressure is prescribed at the diffuser outlet. 

At the diffuser inlet, the unsteady flow field in the 

vaneless diffuser space is represented by the velocity 

induced by vorticity and the two additional potential 

flow components. The unsteady components are 

given by a general complex representation, 

 

# 1 # 2 

# 4 # 3 
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( ) ( ){ }θω ⋅−⋅= mtjruu exp~    (5) 

 

( ) ( ){ }θω ⋅−⋅= mtjrvv exp~    (6) 

 

where j is the imaginary number, t the time, ω the 

angular frequency and m the number of rotating 

cells. For more detail about the modeling conditions 

within this two-dimensional inviscid analysis see 

reference [13]. 

     Tsujimoto et al. [13] have found that the flow 

instability similar to vaneless diffuser rotating stall 

may occur even with uniform outward flow. Their 

linear stability analysis shows that the critical flow 

angle and the propagation speed are functions of 

only the diffuser radius ratio.  

     This two-dimensional analysis is similar to the 

numerical model in the sense that they are both two-

dimensional, incompressible and have constant 

pressure at the diffuser outlet. The major differences 

between the two models lie in the prescribed inlet 

flow conditions. In the two-dimensional inviscid 

flow analysis a rotating uniform velocity profile 

with the assumed number of modes is prescribed, 

while in the numerical model a rotating jet-wake 

with 17 impeller blades is prescribed. In the case of 

the two-dimensional inviscid flow analysis the 

number of rotating cells is prescribed, while in the 

numerical model this value is an outcome based on 

the modeling conditions. 

     Because of the strong similarity between the two 

models, but also because of the slightly different 

approach to the rotating stall instability, it is 

interesting to comparre the results of these two 

models. In the following section, the results obtained 

by the numerical model are compared with the 

results of this linear two-dimensional inviscid flow 

analysis. 
 

 

4   Comparison 

     In this section, the results presented in figures 4 

and 5 are compared with the results of the two-

dimensional inviscid flow analysis. Tsujomoto et al. 

[13] have performed the two-dimensional inviscid 

flow analysis only for the lower order modes, 

namely only m = 1, 2 and 3. Because in the current 

numerical model higher numbers of rotating cells 

were obtained, the solution for the higher order 

modes in the two-dimensional inviscid analysis is 

desired for comparison. In this paper, the higher 

order mode solutions of the two-dimensional 

inviscid flow analysis are calculated and presented. 

These higher order mode solutions are given in 

figures 6 and 7, together with the low order mode 

solutions as determined in [13]. In figure 6 the 

critical flow angle is plotted versus the diffuser 

radius ratio, and in figure 7 the propagation speed is 

plotted versus the diffuser radius ratio for m = 1-13. 
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Fig.6: Critical flow angle obtained by the two-

dimensional inviscid flow model 
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Fig.7: Propagation speed obtained by the two-

dimensional inviscid flow model 

 

     Figure 6 shows that for each mode the critical 

flow angle first increases with increasing diffuser 

radius ratio and then starts to decrease as the diffuser 

radius ratio becomes higher. This transition from 

positive to negative slope of the curve occurs sooner 

for the higher order modes than for the lower order 

modes. Since the critical flow angle should increase 

with increasing diffuser radius ratio according to 

many experimental observations in the literature, as 

shown in [16], the decrease of the critical flow angle 

is not considered to have any physical significance.  

     Considering the modes on the positive slope of 

the curves as existent modes, and the modes on the 

negative slope of the curve as non-existing, it 

follows that for lower R up to higher order modes 

are existent than for higher R, where R = 23 rr . 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp376-383)



According to this two-dimensional inviscid analysis, 

the existent modes m = 1-18 correspond to R = 1.2, 

modes m = 1-7 to R = 1.52, and modes m = 1-4 to R 

= 2. Since the maximum order mode obtained at 

each diffuser radius ratio comes nearest to the non-

existing modes, it is being considered as the most 

unstable mode occurring for that particular diffuser 

geometry. The maximum order modes obtained at 

each diffuser radius ratios are therefore also 

expected to occur first when the diffuser flow 

becomes unstable. 

     The maximum order modes or the most unstable 

modes obtained by the two-dimensional inviscid 

flow analysis are compared with the first occurring 

mode numbers after the instability inception 

obtained by the numerical model. Since the first 

occurring mode numbers obtained by the numerical 

model are, m = 13 for R = 1.2, m = 7 for R = 1.52 

and m = 4 for R = 2, a good agreement is found 

between the two models. This comparison is 

illustrated in figure 8, where the most unstable 

modes are plotted versus the diffuser radius ratio. 

Generally, the same growing trend of the mode 

number is obtained as the diffuser radius ratio 

decreases. For the diffuser radius ratio R = 1.52 and 

higher, the same number of cells is obtained by both 

models. 
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Fig.8: Comparison of the obtained mode numbers 

between the two models 

 

     The critical flow angles from figure 6 and the 

propagation speeds from figure 7, corresponding to 

the maximum mode number for a given diffuser 

radius radio, are also compared with the critical flow 

angles and propagation speeds obtained by the 

numerical model. In figure 9, the critical flow angles 

and the propagation speed of the cells, obtained by 

the two models, are compared for different diffuser 

radius ratios.   
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Fig.9: Comparison of the critical flow angles and 

the propagation speeds between the two models 

 

To indicate the changing trend obtained by the two-

dimensional inviscid flow analysis, a polynomial is 

fitted through the obtained values, while the values 

obtained by the numerical model are connected with 

the solid line. This figure shows that not exact but 

quite good agreement between the two models is 

obtained. 

 

 

5   Conclusion 
A two-dimensional viscous incompressible flow 

model was developed to study the core flow 

instability within the wide vaneless radial diffusers 

of centrifugal compressors. With this numerical 

model of the vaneless diffuser core flow, a two-

dimensional rotating instability similar to rotating 

stall in vaneless diffusers was found to exist.  

     The two-dimensional rotating instability occurs 

when the critical flow angle is exceeded. It fully 

develops within a few impeller revolutions and it 

consists of a number of rotating cells that propagate 

with a fraction of the impeller speed. 

     It is shown that the number of rotating cells and 

their size change with the diffuser geometry, and 

that the maximum number of rotating cells, 

occurring when the two-dimensional rotating 

instability is fully developed, can be estimated. The 

estimation is based on the diffuser space length and 

the diffuser circumference.  

     Similar approach for the study the rotating stall in 

vaneless radial diffusers is used by Tsujimoto et al. 

[13], who have performed a two-dimensional 

inviscid flow analysis in the vaneless diffuser space. 

Since they have presented the solutions only for low 

order mode numbers, m = 1-3, the solutions for the 

higher order modes, m = 1-13, were also obtained 
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and presented in this paper. The higher order mode 

solutions of the two-dimensional inviscid flow 

analysis were interesting to compare with the current 

numerical model, because with this model higher 

order modes were obtained. It is shown that the 

numerical results are in good agreement with the 

two-dimensional inviscid flow model. The two-

dimensional inviscid flow model shows that the 

maximum mode number, considered as the most 

unstable mode, decreases with increasing diffuser 

radius ratio, which is in good agreement with the 

number of modes obtained by the numerical model. 

The same maximum number of cells for the most 

diffuser radius ratios was obtained by both models, 

and the obtained critical flow angles and the 

propagation speeds of the rotating cells with the two 

models were also in good agreement. 

     Good agreement between the current numerical 

model and the two-dimensional inviscid flow 

analysis performed in [13], is very supportive to the 

both models, and to the two-dimensional approach 

used for the study of rotating stall instability in the 

vaneless radial diffusers. 
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