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Abstract: In this paper we explore the specification of time dependent boundary conditions for the simulation of low
Mach number reacting flows. A new approach is presented which is derived from the method of characteristics and
an application of a Mach number based double expansion. Through the double expansion, it is possible to identify
and seperate inertial events from acoustic events. By controlling the inertial components of the flow, non-reflecting
conditions for a wide variety of problems may be specified. The accuracy of the method is demonstrated using a
curved stagnating flame, in which the reaction zone crosses the boundary.
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1 Introduction

The specification of accurate boundary conditions for
subsonic turbulent reacting flows remains an open
problem. There is a considerable literature available
for the specification of time dependent boundary con-
ditions for cold flows; the same cannot be said for
reacting flows, or for flows where a strong diver-
gence does not emerge as a result of compressible flow
physics. Broadly speaking, there are two categories
available for the selection of time dependent boundary
conditions; global and local methods. Global meth-
ods have a stronger theoretical underpinning, but are
not easy to implement in either turbulent or reacting
flows; in these cases the linearization used to produce
the pseudodifferential operators used at the bound-
ary may not be appropriate [1]. Local methods have
seen considerable development in recent years and,
although they were originally designed for the lin-
earized Euler system [2, 3, 4, 5, 6], extensions to other
flows have also been discussed. These extensions are
largely based around the Navier-Stokes Characteristic
Boundary Conditions (NSCBC) and the Local One
Dimensional Inviscid (LODI) approaches developed
by Poinsot et al. [7], and have sought to incorporate
viscous and reacting effects [8, 9, 10, 11]. The limita-
tions of characteristics-based boundary conditions for
the simulation of turbulent flows have been examined
by Colonius et al [12]. In their work the authors intro-
duce a base flow, which is supposed to be ‘near’ to the
actual flow evolution in some sense. Such a reference
flow need not satisfy the Navier-Stokes equations, but
is rather an artifact designed to improve the accuracy

of the linearization used to develop the boundary con-
ditions. Even disregarding the difficulties of specify-
ing an appropriate base flow in complex geometries,
the results they present are not significantly improved
by this practise.

A framework for the well posedness of Navier-
Stokes problems has been proposed by Strikwerda
[13]. Dutt has built on this and produced an energy
estimate that serves as a tool for the specification of
the required boundary conditions [14]. In the latter
case, a well posed boundary condition is expressed in
terms of an entropy estimate. It is not immediately
obvious how the standard non-reflecting treatment fits
into the latter’s framework; furthermore the resulting
boundary conditions specified by Dutt, although well
posed, are not always expressed in terms of easily de-
finable physics.

In earlier work, we described an approach that
maintains the spirit of the proposal by Colonius et al.
in that the flow is linearized around a base state. For
cold low Mach number inviscid flows, the base state
is assumed to be solenoidal [15]. Dilatation arising
from thermal conduction in low Mach number flows
has been examined in a more recent work [16], and
this paper further extends the analysis by examining
boundary conditions for problems with significant en-
thalpy transport and chemical reaction effects. The
boundary condition is tested using a curved flame,
with a reaction zone that crosses the computational
boundary.

In section 2, we review the linearized equations
used to derive the boundary conditions. In section 3,
we examine the extension of the treatment to react-
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ing flows. Section 4 reviews the problem used to test
the boundary conditions, and discusses the results ob-
tained. Conclusions and avenues for future work are
presented in section 5

2 Governing equations

For a boundary whose normal points in the x̃α di-
rection, the NSCBC [7] approach decomposes the
α−direction flux term of the Navier-Stokes equations
into

∂

∂t
(U)+ S

−1
α Lα

∂

∂x̃α
(U)

+
n∑

i=1
i�=α

P
−1 (Fi)U

∂

∂x̃i
(U)

= P
−1
C, (1)

In equation 1, Lα = {L1, L2, . . . , LNs+4}
T

is the
vector of amplitudes, U is a vector of primitive vari-
ables, P is the transformation matrix relating primi-
tive and conserved quantities,Fi is the flux vector, and
Sα is the matrix of left eigenvalues of P−1 (Fα)U .

For this study U = {ρ, u, v, E, Y1, ..., YNs}
T . There

is no summation over Greek indices. For two dimen-
sional problems, the amplitude vector is associated
with Ns + 4 eigenvalues: a left-going and a right-
going ‘acoustic’ or non-linear amplitude [17] (prop-
agating with speeds ui − a and ui + a, respectively),
and Ns + 2 degenerate eigenvectors with propagation
speed ui representing convective transport. A non re-
flecting outflow is traditionally obtained by setting to
zero all of those amplitudes that are incoming at the
outflow [4].

We will assume in this paper that the domain
is a two dimensional square, whose boundaries are
aligned with the x− and y− axes. We will assume
an inflow at x = 0 and and outflow at x = X. out-
flows will also be assumed at y = 0 and y = Y where
X and Y represent the size of the domain in appropri-
ate physical units. If we introduce a low Mach num-
ber asymptotic expansion [18] into the definition of
the amplitudes, coupled with a two scale decomposi-
tion to separate the acoustic length scales ξi = Mxi
(where M is the flow Mach number) from the inertial

length scales xi [19], a new non-reflecting convective
outflow boundary condition for equation set 1 at the
x = X boundary can be shown to be [15, 16]
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while for the y = 0 boundary, we have

Ly4 = Ly1 − (γ − 1)T
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and the y = Y boundary condition requires

Ly1 = Ly4 + (γ − 1)T
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In each of the preceding equations,∆(1) is an acoustic

divergence and is defined as

∆(1) =
∂u

(0)
i

∂ξi
.

The key challenge in the application of equations 2,
3 and 4 lies in the identification of the acoustic diver-
gence.

3 Reacting flow treatment

We define ∆ as the numerical divergence, calcu-
lated using some numerical scheme during the simula-
tion. It is straightforward to show that for cold flows,
∆(1) ≡ ∆. For reacting flows, there are effects that
can produce a leading order divergence without com-
pressibility effects; these are reaction, thermal con-
duction and mass diffusion. For these types of prob-
lem,∆ contains a non-negligible leading order contri-
bution;

∆ = ∆(0) +M∆(1) +O
(
M2

)
, (5)

where ∆(0) is the inertial divergence—it is that com-
ponent of the divergence that moves with the local en-
tropy speed, and is defined as

∆(0) =
∂u

(0)
i

∂xi
.

An estimate for ∆(0) for general flows is obtained
from the pressure transport equation [20]. Using the
same low Mach number/two scale decomposition as
for the non-reacting case, it is straightforward to show
that

γp(0)

(γ − 1)
∆(0) = ∇x ·

(
λ∇xT

(0)
)

+
Ns∑

α=1

(
ω(0)α +∇x · (ρDα∇Yα)
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)
. (6)
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∇x represents a spatial gradient with respect to the
inertial length scales. The species mass fraction gra-
dients are leading order effects alone; they can only
affect the leading order density and temperature. This
explains why they are not indexed in the same way as
the other terms. ∆(0) = 0 is recovered in the limit
of no chemical reaction and no gradients in composi-
tion or temperature. The one dimensional analogue of
∆(0) = 0 is the condition imposed to all orders by the
standard non-reflecting boundary condition treatment
[4], irrespective of the actual flow physics.

The final form of the boundary conditions are the
same as those given by equations 2, 3 and 4, with
the acoustic divergence estimated as (in dimensional
quantities)

γp

(γ − 1)
∆(1) ≃

γp

(γ − 1)
∆−∇ · (λ∇T )

+
Ns∑

α=1

(ωα +∇ · (ρDα∇Yα)) (hα − γeα)

+
Ns∑

α=1

∇ · (hαρDα∇Yα) .

Where we understand that the spatial gradients are
now just those calculated numerically. This approach
is similar to that derived in [15] for cold flows, and
differs only in the expression for∆(0).

4 Test problem and results

We have tested the boundary conditions via the sim-
ulation of a curved and strained flame. This config-
uration is particularly challenging, as the flame front
crosses the boundary at an angle and previous treat-
ments have encountered some difficulties in accom-
modating the flame at the boundary without introduc-
ing large pressure transients [11]. The flame has a sin-
gle step chemistry, with the simplified reaction mech-
anism

Reactants→ Products.

The thermochemical state of the fluid is characterized
by a normalized product mass fraction, commonly re-
ferred to as a reaction progress variable and denoted
c. The reaction rate is given by

ω = ρB∗ (1− c) exp

(
−β (1− c)

1− α (1− c)

)
,

where B∗ = 285 × 103s−1, the Zeldovitch number
β = 6, and α = 0.8 (corresponding to a heat release
of 4). This leads to a product temperature of 1500K.
Molecular transport is handled by the joint assump-
tions of constant unit Lewis number and a constant

Prandtl number (= 0.71). The thermal conductivity
is given by [21]

λ = 2.58× 105cp,

where the temperature dependence of λ has been sup-
pressed. B∗ has been set such that the resulting lami-
nar flame speed is 0.6m/s.

The initial conditions are estimated using poten-
tial flow theory. A point source is placed far to the
right of the outflow, and a planar flow is assumed at
x = −∞. By controlling the strength and position of
the source, flames with different curvatures and strain
rates can be simulated. As the flow is not inviscid,
both reaction and transport effects cause the solution
to move rapidly away from the initial conditions via
the production of a large transient pressure field. The
transient leaves through the non-reflecting boundaries.
Non-reflective convective outflows are specified on
the spanwise boundaries. ‘Fixed’ conditions are spec-
ified on the x−boundaries, by which we understand
that the inertial component of the velocity does not
change on these boundaries—they are, however, still
non-reflecting. The code used to test the new bound-
ary conditions has been described in our earlier work.
The accuracy and validity of the approach has been
established using an asymptotic flame solution, and is
reported elsewhere [22].

4.1 Viscous conditions

For this study, we have tried a number of viscous
boundary conditions. Of the those tested, we found
that the most successful in terms of long term stability
were

∂ (τxx)

∂x
= 0 (on x− boundaries)

∂ (τxy)

∂y
= 0 (on y − boundaries).

It is interesting to examine the long term effects of
viscous condition specification on flow solutions that
are nominally stationary (such as the strained, curved
flame studied in this paper). We have found that if
the normal stresses are set to zero in both directions,
then there is a long term wind up in the flow veloci-
ties at the corner of the domain; this has been traced
back to the effective vorticity transport equation im-
plicitly solved during the simulation. By choosing an
inconsistent set of viscous conditions conditions for
the momentum equations, it appears that the boundary
conditions act as a vorticity sourceterm in the domain
corners. Similar problems have been seen for react-
ing flows, where an over specification of viscous con-
ditions at the boundary can lead to ill behaved solu-
tions [11]. For the case described here, the sourceterm

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 2006 (pp130-135)



produced by incompatible viscous conditions is only
O
(
M2
)
, and the simulation can proceed for a long

integration time before a problem emerges. The vor-
ticity wind-up does not produce a spurious pressure
field; increments in the pressure field driven by the
vorticity sourceterm are propagated out of the domain
by the acoustic wave treatment discussed in this paper.
Future work will seek to remedy the spurious vorticity
production, while simultaneously meeting the gener-
alized energy estimates of Dutt [14] required for very
long term stability.

4.2 Results

A square domain of side approximately 1mm is used,
with 128 grid points used in each spatial direction.
The flame structure is deliberately over-resolved in or-
der to ensure that any spurious waves produced are
a result of the boundary conditions and not under-
resolution of the flame structure. Figure 1 shows
the velocity vectors associated with the curved flame
front. We observe that the flame crosses the bound-
ary with no apparent ill effects. The curvature ap-
pears to produce a lensing effect which, in turn, will
increase the curvature of the flame over time in the ab-
sence of other influences. The lensing is also respon-
sible for the entrainment behaviour of the spanwise
boundaries—these act as part inflow and part outflow.
The boundary conditions appear well able to handle
this behaviour.

The pressure field associated with the solution
is given in figure 2. The flow is accelerated by
the pressure gradient imposed through the streamwise
boundary conditions until it reaches the reaction zone,
whereupon the gradient flattens due to the heat re-
lease. We note that the pressure field exhibits none of
the spurious effects associated with other characteris-
tics based approaches, and that the dynamic pressure
range (about 5N/m2) is consistent with that estimated
from the velocity field using

∆p ∼
1

2
∆(ρu · u) .

A solution cannot be obtained for this configuration
using the LODI/NSCBC approach of Poinsot et al.
[7].

No asymptotic solutions for the curved flame con-
figuration are available for benchmarking. Neverthe-
less, we may compare the curved flame structure to
an analytic one dimensional solution [23], and assess
whether the differences between the two are consis-
tent with the effects driven by the local flow field. Fig-
ure 3 compares the progress variable profile of both
flame structures along the centre line of the domain.

The first curve is that obtained from the numerical so-
lution, and contains transverse strain components as
well as curvature. The second curve is the asymp-
totic solution. The flame in the curved, strained case
is thinner than the one dimensional solution. This
can be explained by comparing the normal strain rate
(= ∂u/∂x) encountered by the flame along the cen-
tre line of the solution. In figure 4, the curved flame
is associated with a double peaked positive normal
strain rate, the maximum magnitude of which is sig-
nificantly less than that associated with the one dimen-
sional flame profile. In the unstrained case, the higher
normal strain rate acts to stretch the flame, and so pro-
duce the observed thicker flame profile.

5 Conclusions

In this paper, we have presented a method designed to
prescribe time dependent boundary conditions. The
new method is quite general, and can be applied to
multidimensional flows both with and without chemi-
cal reaction. The scheme is based on a linearization
of the solution about an appropriately defined base
flow. This base flow is solenoidal in cold, low Mach
number flows, but is non-zero in the presence of reac-
tion and transport effects. The resulting formulation
allows non-reflecting boundary conditions for a wide
class of flows to be applied. The behaviour of the new
approach shows a significant improvement over other
methods.

The method is based on the calculation of the nu-
merical divergence, and on the separation of inertial
and acoustic effects. Consequently, the approach re-
lies heavily on the numerical discretization schemes
employed in the simulation. Future work will exam-
ine more thoroughly the interplay between the numer-
ical schemes and the boundary conditions, in partic-
ular examining the treatment of corners (which often
have to contend with doubly poor numerical approx-
imations). Additionally, more analysis will be under-
taken to verify that the proposed boundary conditions
are stable, using the energy estimates of Dutt [14]; the
current simulations have shown themselves to be sta-
ble over very long simulation times (of the order of
tens of thousands of time steps), but additional theo-
retical work is still required to prove very long term
stability.
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Figure 1: Velocity field associated with curved reac-

tion front.
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Figure 2: Pressure surface coloured by progress vari-

able. Contours striped to clarify flame structure.
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Figure 3: Comparison of progress variable profiles in

cases with and without transverse strain
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Figure 4: Comparison of normal strain rates for one

dimensional flame structure and curved flame struc-

ture.
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