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Abstract: This paper proposes a high-level formalism, called Abstract Functional and Timing Graph (AFTG), for
describing a memory architecture, which combines logical functionality and timing. After translation of the AFTG
into the form a timed automaton, we are able to compute the response times of the modeled memory, and check their
consistency with the values specified in the datasheet. We also address the problem of finding optimal values of setup timings.
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1 Introduction

The purpose of this paper is to verify the timing consis-
tency of an embedded memory, named SPSMALL: given
a transistor-level description of the memory and its inter-
face specification (a datasheet that specifies the timing con-
straints to be satisfied by the memory), formally prove that
the implementation satisfies the specification.

There are two main methods to compute the timings of
the datasheet: electrical simulation and static timing anal-
ysis. The timing verification of memory is generally per-
formed by electrical simulation (e.g. by tool HSIM [1]) at
transistor level. However, as currents and voltages are sim-
ulated at transistor level, electrical simulation cannot be ex-
haustively applied to large circuits. Designers, in practice,
have to apply simulation to restricted parts of the circuit,
thus compromising the soundness of the whole process. An
alternative to electrical simulation is “static timing analy-
sis”, e.g., with tool HiTAS [15]. This method constructs a
graph of dependencies between signals, and computes the
timing associated with the longest path of the graph. How-
ever, this analysis ignores the functionality of the circuit
components, thus often yielding an over-approximation of
the set of longest paths.

In order to formally verify that the implementation per-
formances meet the values specified by the datasheet, some
abstract structures have been proposed (timed-event struc-
tures [18, 6], timed symbolic simulation [10] and timed au-
tomata [3, 7, 14, 13, 11]). These structures combine func-
tional and timing information, and have been successfully
applied to the timing verification of hardware components,
(e.g., [19] starting from a VHDL description, or [7] for
speed-independent asynchronous circuits).

We will adopt here a similar approach based on timed
model checking. We will first construct a model of the
memory, starting from its transistor level description. This
model (Abstract Functional and Timing Graph, in short
AFTG) will incorporate the functionality and timings of the
memory architecture. It can be easily translated into a prod-
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uct of timed automata, which is successfully exploited with
timed model checking tools (e.g. UPPAAL [16]). We thus
check that some end-to-end timing values of signal propa-
gation (“response times”) match the values of the datasheet.
We also discuss the problem of computing optimal values
of setup timings of input signals. We will focus on two
distinct implementations of the SPSMALL memory, called
SP1 and SP2.

This paper is organized as follows. Section 2 describes
the behavior of the memory, and the properties related to its
response times. Section 3 presents the principles of con-
struction of the AFTG. In Section 4, we explain how to
translate this AFTG into a product of timed automata, then
give experimental results obtained with model checker UP-
PAAL (Section 5). We conclude in Section 6.

2 Memory Specification

The memory SPSMALL can be implemented using differ-
ent transistor technologies. We consider here two imple-
mentations: SP1, which corresponds to a “high speed”
technology, and SP2, which corresponds to a “low power”
technology. The architecture is common to both implemen-
tations, but the propagation delays are specific to each tech-
nology.

2.1 Functionalities and Interface

The functionality of a memory circuit is to store and sup-
ply data at a given location, which involves two operations:
write and read. In order to achieve such semantics, the
memory has to be supplied with data (D), address (A) and
control information (WEN) to indicate the type of opera-
tions (write or read) at the input port. The resulting data is
produced at the output port Q. In practice, the memory is
embedded into the synchronous environment scheduled by
a periodic signal ’clock’ (CK). The clock period tcycle is
made up of a high level period (TH ) and a low level period
(TL). This is depicted on Fig.1
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Figure 1: Basic interface of a memory

The value of signals occurring at input ports determines
the memory operation: either read or write a data at an ad-
dressed location. In order to to be taken into account, each
input signal I must remain stable before and after the rising
edge of the clock. These delays are called setup and hold
times for I , and denoted by tI

setup and tIhold respectively.

A read (resp. write) operation requires a delay, denoted
by tread

CK→Q (resp. twrite
CK→Q) due to the time of traversal of the

elementary components of the memory. The specification
states the maximum delay, denoted by tread

max (resp. twrite
max )

in the case of a read (resp. write) operation.

The set of timings {tread
max, twrite

max , tH , tL, tIsetup, t
I
hold}

constitutes the interface specification shown in Fig.2.
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Figure 2: Interface Specification

This set of timings heavily depends on the transistor
technology upon which the memory circuit relies. The val-
ues of the interface specification are usually determined by
electrical simulation at transistor level. Actually, such a
simulation process is much too long to be performed in a
complete manner. Sensitive portions of the circuit, which
are supposed to contain the longest paths of propagation,
are therefore identified by hand. Electrical simulations are
performed only for such limited portions of circuit, which
are assumed to contain the critical paths. Such an assump-
tion of ‘criticality’ is risky: it is very difficult to identify
by hand relevant sensitive portions of the circuit (especially
when the complexity of the circuit increases). The need
for formal methods to verify the timings of the datasheet is
therefore widely recognized.

2.2 Verified property

We will focus in this paper on the following property, ex-
pressing an important aspect of the timing correctness of
the behavior of the memory.

The result of a write (resp. read) operation is produced
on output port Q within twrite

max (resp. tread
max). This will be

expressed as: twrite
CK→Q ≤ twrite

max (and similarly for the read
operation). Besides, our analysis will allow us to find the
optimal value for parameters tIsetup, for any input signal I .

3 Abstract Functional and Timing
Graph

We describe here an abstract level of representation of
circuits, called “Abstract Functional and Timing Graph”
(AFTG).

3.1 Level of modeling

In general, there are several levels to model circuits: tran-
sistor level, gate level, latch level and block level. We adopt
the ’latch level’ instead of the traditional ’gate level’. At
this level of representation, the flow of input signals tra-
verses the circuit in a linear manner (without loops), while
the flow is cyclic at the gate level (the output of one gate can
be an input of another gate and the converse can be simul-
taneously true). Note that this level is more precise than the
block level used in [4, 5].

The circuit is then modeled in a two-steps construction:
first, we build a functional graph representing the function-
ality of the memory at an abstract level (similar to the notion
of “circuit graph” of [9]), then we add some timing infor-
mation to this graph, representing the propagation delays
through the components associated with the graph vertices.

3.2 Functional Graph

The functional graph associated with the memory then re-
lies on the same principles as those described in [9]. The
wires, latches and (blocks of) logical gates are represented
as vertices (labelled by numbers). These vertices are inter-
connected by arcs labelled by signal names. Wire vertices
have indegree and outdegree 1. Input (resp. output) ver-
tices have indegree (resp. outdegree) 0. Wire vertices are
drawn as “narrow” rectangles, functional vertices as circles
and latches as “large” rectangles.

More precisely, the functional graph is constructed ac-
cording to the following process:

• Model reduction:

– reduction of a m words memory array to a one
word array (the propagation delay is extracted
from a m address decoder).

– reduction of a n bits word to a one bit word
(the taken propagation delay corresponds to the
longest path from the address decoder to the
memory location).
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• Abstraction of the reduced model:

– isolation of latches (as they correspond to break-
age flow in the circuit),

– insertion of logical gates between latches (as they
shape the edges of the output signal).

In practice, the functional graph is constructed by man-
ually extracting the functional components from VHDL
code [12] (which is itself generated from transistor netlist
by the tool TLL [2]).

3.3 Graph with Timings

In a second step, vertices are associated with delays: each
vertex i is associated with two delays t1i and t0i , which rep-
resent the time for a rising and falling edges to traverse i
respectively. (We distinguish here the propagation of a ris-
ing edge from that of a falling edge, because the confusion
of the two values would yield a too coarse approximation).
We adopt the inertial delay interpretation (see [9]): given
a vertex i, values on inputs of i that do not persist for t1i
(or t0i ) time are filtered out.

In practice, once given the functional graph, associated
timings are obtained by electrical simulation performed
with tool HSIM [1].

The graph can be essentially decomposed into two differ-
ent kinds of subcomponents: gates (with their input wires),
and latches (with their input wires).

3.3.1 Gate component

A gate component can then be depicted as in Fig. 3. (For the
sake of brevity, we consider the case of two inputs only.) It
is composed of a functional vertex n preceded by two input
wires k and `. Signal i′ corresponds to the input signal i
delayed by the traversal of k. The value of the delay is
represented by t1k/t0k, where t1k (resp. t0k) corresponds to the
rising (resp. falling) edge of i. The delay of traversal of
the functional gate n is considered as null. (In other words,
the propagation delay from an input wire to the output of
the gate is totally assigned to the input wire, cf [17, 20].)
The vertex n of the logical gate has a functionality fn. The
value of the output q is set to fn(i

′

, j
′

), whenever one of its
inputs {i

′

, j
′

} changes.

n
j

i i′

j′

k

t1k/t0k

t1`/t
0

`

`

q

fn

Figure 3: Graph of a gate component

3.3.2 Latch component

A latch component can then be depicted as in Fig. 4. It is
composed of a latch vertex n preceded by two wires, de-
noted by k and ` respectively, where k propagates the data
input (d′), and ` the enable input (enable′). Wires k and
` have their own inertial delays. The latch vertex n has a
delay t1n/t0n, corresponding to the propagation of the data
from d′ to q when the latch is open (enable′ = 1).

n
d d′ q

enable′

enable

k

`t1`/t0`

t1k/t0k
t1n/t0n

Figure 4: Graph of a latch component

As soon as the latch is open (enable′ = 1), the data on
d

′

is copied to q after t1n/t0n according to the value of d
′

.
When the latch is closed, q remains stable no matter how
the input d

′

changes.

3.3.3 AFTG of SP1 and SP2

By connecting the different subgraphs of gates and latches
of the memory together, we obtain a global AFTG capturing
the abstract architecture of SPSMALL. The inertial delays
are instantiated with two different sets of values, depending
on the considered implementation SP1 (see Fig. 5) or SP2
(see Fig. 6).

4 Verification Using Timed Automata

Once given an abstract representation like an AFTG, it is
easy to translate it under the form of a “timed automa-
ton” [3], and to compute the values of relevant response
times using a model checker tool (see [4, 5]).

4.1 Timed Automata

The model of timed automata [3] is especially well-suited to
represent asynchronous circuits: see, e.g., [8, 20]. Roughly
speaking, a timed automaton is a finite state automaton en-
riched with (symbolic) clocks that evolve at the same uni-
form rate, and can be reset to zero. A state is a pair (`, v)
where ` is a location (or “control state”), and v a clock valu-
ation. Each location is associated with a conjunction of lin-
ear constraints over clocks, called invariant. A state (`, v)
has a discrete transition, labelled e, to (`′, v′) if v satisfies a
constraint, called guard, associated to e, and v′ is obtained
from v by resetting certain clocks to 0. The state (`, v) has
a time transition of duration t to (`, v′) if v′ = v + t and for
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all t′ (0 ≤ t′ ≤ t), v + t′ satisfies the invariant associated
to `.

The composition of two timed automata is obtained by
synchronizing the actions labelling two transitions on emis-
sion of a signal q and simultaneous reception of the same
signal.

In order to model the AFTG, each of its components is
represented as a timed automaton combining its function-
ality and propagation delays. Input signals CK, D, A and
WEN are themselves represented as timed automata. The
AFTG is then modeled as a composition of timed automata
where synchronization is used to model the transmission
of an internal signal between two components. A central
clock, which is never reset to 0, is used to measure the evo-
lution of time.

4.2 Computation of Response Times

Using the model of timed automata, we are able to compute
the maximal response time tread

CK→Q. This is done by us-
ing an additional “observer” timed automaton (see [5]). We
are then able to check immediately the property tread

CK→Q ≤

tread
max , where tread

max is the value specified by the datasheet.
The same method applies for computing twrite

CK→Q, and
checking the property twrite

CK→Q ≤ twrite
max .

4.3 Optimal Values of Setup Timings

Intuitively, the response times are related to the “critical
path” of the circuit. Such a critical path involves only some
specific input signals, which allows us to safely reduce the
setup timings of the other input signals (as long as this re-
duction does not modify the critical path).

Once we have computed the response times tread
CK→Q and

twrite
CK→Q, one can try to find the optimal values of setup tim-

ings of input signals which preserve these response times.
This is done by decrementing iteratively the setup timing
values until this entails a modification in one of the response
times.

5 Experimental Results

Experiments are performed using model checker UP-
PAAL [16]. Each property is verified within 5 minutes on a
1GHz PowerPC G4 with 512 MB of memory.

5.1 Computed Response Times

Table 1 gives the values of tread
CK→Q (resp. twrite

CK→Q) together
with the value tread

max (resp. twrite
max ) of the datasheet for SP1.

We immediately check the property: tread
CK→Q ≤ tread

max (resp.
twrite
CK→Q ≤ twrite

max ).
Similarly, the computed response time for SP2 and the

related datasheet values are given in table 2. We also check
immediately: tread

CK→Q ≤ tread
max (resp. twrite

CK→Q ≤ twrite
max ).

computed response time value of the datasheet
tread
CK→Q = 74 tread

max == 77

twrite
CK→Q = 56 twrite

max == 56

Table 1: Response times for SP1 (time unit =10 ps)

computed response time value of the datasheet
tread
CK→Q = 169 tread

max == 169

twrite
CK→Q = 142 twrite

max == 142

Table 2: Response times for SP2 (time unit = 10 ps)

5.2 Optimal Values of Setup Timings

Table 3 gives three columns of values of setup timings of
input signals tIsetup for input signal I , in the case of SP1.
The 1st column presents the optimal values computed with
UPPAAL according to the method described in Sec. 4.3.
The 2nd column gives the corresponding optimal values
found by the designer using electrical simulation (with tool
HSIM). The 3rd column gives the nominal values specified
in the datasheet.

setup optimal value optimal value value

parameter obtained by obtained by of the
computation simulation datasheet

tDsetup 95 95 108

tWEN
setup 29 36 48

tAsetup 31 30 58

Table 3: Optimal setup timings for SP1 (time unit = 10 ps)

Analogous results for SP2 are given in table 4.

Almost all the optimal values computed by model check-
ing and by electrical simulation are very close to each other.
However, one computed value is significantly different from
the simulated one: for SP1, the computed value tWEN

setup is
29, which is much less than the value 36 obtained by simu-
lation. This may indicate that (at least) one delay assigned
to a vertex of the AFTG of SP1 (which has been computed
by electrical simulation) is too approximative. Such a de-
pendency on the precision of the simulation measures points
out a limitation of our approach.

6 Conclusion

As a recapitulation, the main steps of our work are the fol-
lowing:

• construction of an abstract model (AFTG) for the SPS-
MALL memory,

• computation of the response times by translation of
the AFTG model into a timed automaton, and model
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setup optimal value optimal value value

parameter obtained by obtained by of the
computation simulation datasheet

tDsetup 229 229 241

tWEN
setup 55 55 109

tAsetup 73 74 110

Table 4: Optimal setup timings for SP2 (time unit = 10 ps)

checking using UPPAAL,

• verification of the consistency of the computed re-
sponse times with the values of the datasheet,

• discussion of the problem of finding the optimal setup
timings of the input signals.

This analysis provides us with satisfactory answers con-
cerning the response timings. However, our method heavily
relies on the accuracy of the measures done for evaluating
the propagation delays through the internal components of
the memory.
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