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Abstract: - We have studied experimentally the inverse system approach, which is used when we want to synchronize 
two chaotic systems (master – slave). We apply this method to a second order nonlinear circuit, which is described by 
a Duffing equation. We present two different implementations of the slave circuit with the inverse method and we 
demonstrate the possibility of synchronization when the two circuits have the same parameter values. We have also 
coupled the two circuits via a linear resistor Rx and we discovered, that synchronization holds for small values of Rx. 
Finally, we found out that the two circuits must be identical, otherwise the synchronization collapses.  
 
Key-Words: - Chaos, Duffing eq uation, Synchronization, Inverse system, Resistive coupling, Master-Slave circuits. 
 
1. Introduction
In recent years chaos synchronization has become a 
topic of great interest. Since the pioneering work of 
Pecora and Carroll on synchronization of two coupled 
chaotic systems [1-3], many researchers have 
discussed the stability of this type of dynamics. 
Synchronization of chaotic systems plays an important 
role in several research areas. For example, neural 
signals in the brain are observed to be chaotic and it is 
worth to consider further their possible 
synchronization [4]. Other interesting examples may 
be seen from the working artificial neural networks 
[5], biological networks [6], coupled chaotic neurons 
[7], multimode lasers [8], coupled map lattices [9, 10], 
and coupled electric oscillators [11]. Also, the topic of 
synchronization has arised great interest as a potential 
means for communication [12, 13]. The last few years, 
a considerable effort has been devoted to extend the 
chaotic communication applications to the field of 
secure communications. Accordingly, a number of 
cryptosystems based on chaos has been proposed [14-
16]. 

Many synchronization schemes have been 
proposed and pursued. Three of them are the most 
common to synchronize chaotic systems, i.e. linear 
feedback [17-19], decomposition into subsystems [20], 
and  the inverse system [21, 22]. The last method can 
be used to synchronize non-autonomous systems. In 
this method, the basic idea is to construct an inverse 
nonlinear system (slave), which will reproduce the 
input signal by using the output signal from the 
original system (master), as shown in Fig.1. In general, 
finding an inverse of a nonlinear system (inverse of a 
nonlinear operator realized by a circuitry), is a very 

difficult task. Several approaches for solving this 
problem are known from the automatic control 
literature, however, there is no general solution to this 
problem. 

 

 
 
Fig.1. Schematic explanation of the inverse system 
approach 
 
 In the present paper we have shown, the 
experimental synchronization between two Duffing-
type circuits, with the inverse system approach. In 
Section 2, the Duffing-type circuit is presented. The 
confirmation of the synchronization of two identical 
Duffing-type circuits is presented in section 3. Also, in 
section 3, we present the results of the coupling of two 
mismatched circuits and also, of the coupling via a 
linear resistor. 
  
 
2. The Duffing–type Circuit 
Duffing’s equation,  

2
31 1

1 12

d x dx a x b x B cos( t)
dt dt

+ ε ⋅ + ⋅ + ⋅ = ⋅ ω⋅                   (1) 

is one of the most famous and well studied nonlinear 
non-autonomous equations, exhibiting various 
dynamic behaviors, including chaos and bifurcations.  
One of the simplest implementations of the Duffing 
equation has been presented by Leuciuc [23]. It is a 
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second order nonlinear circuit, which is excited by a 
sinusoidal voltage source and contains two op-amps 
(LF411) operating in the linear region Fig.2. This 
circuit has also a very simple nonlinear element, 
implementing a cubic function of the form  

3i(v) = p v + q v⋅ ⋅   (2) 
which is shown in Fig.3.  
 

 
Fig.2. The electric circuit obeying Duffing’s equation 
 

R11

R1

R12

 
Fig.3. The nonlinear element implementing the cubic 
function of the form 3i(v) = p v + q v⋅ ⋅  
 
Denoting by x1 and x2 the voltages across capacitors 
C2 and C4 respectively, we have the following state 
equations. 
 

1
1 2

2 2 2 3

dx 1 1x x   
dt C R C R

= − ⋅ + ⋅
⋅ ⋅

                         (3) 

 
0 02

1
4 5 4 5

R Vdx f (x ) cos( t)
dt C R C R

= − ⋅ + ⋅ ω⋅
⋅ ⋅

             (4) 

 

where, 3
1 1 1f (x ) p x q x= ⋅ + ⋅ , is a cubic function. 

Finally, from equations (3) and (4), we take the 
Duffing equation (1), where, 
 

2 2

1
C R

ε =
⋅

,                0

2 4 3 5

p Ra
C C R R

⋅
=

⋅ ⋅ ⋅
 

0

2 4 3 5

r Rb
C C R R

⋅
=

⋅ ⋅ ⋅
,   0

2 4 3 5

VB
C C R R

=
⋅ ⋅ ⋅

   (5) 

 
The values of circuit parameters are 

R0=2.05kΩ, R2=5.248kΩ, R3=R5=1kΩ, 
R11=R12=0.557kΩ, R1=8.11kΩ, C2=105.9nF, 
C4=9.79nF, V0=2V and f=1.273kHz, so the normalized 
parameters take the following values a=0.25, b=1, 
ε=0.18, ω= 0.8 and B=20.  The phase portrait of x2 vs. 
x1 is shown in Fig.4, where we can see that the circuit 
has a chaotic behaviour. 
 

 
 
Fig.4. Experimental phase portrait of x2 vs. x1 for 
a=0.25, b=1, ε=0.18, ω= 0.8 and B=20 (Horiz.: 
1V/div., Vert.: 5V/div.) 
 
 
2.1 The Coupled Circuits 
We have constructed two different coupled schemes, 
and we have studied two different slave circuits with 
the inverse method.  
  
2.1.1 Coupling via nodes-4 
In the first case the circuits (master-slave), are coupled 
via nodes-4, (Fig.5). The slave circuit is described by 
the following set of equations. 

1
1 2

2 2 2 3

2
2 1

4 5 4 5

0 1 2 1

dx ' 1 1x ' x '
dt C R C R

dx ' 1 1x ' y     
dt C R C R

                     
s ' R f (x ') x ' y

= − ⋅ + ⋅
⋅ ⋅

= − ⋅ + ⋅
⋅ ⋅

= ⋅ − +

   (6) 
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where, x1΄, x2΄, are the voltages across the capacitors 
C2 and C4 respectively of the slave circuit. 
 

 
 
Fig.5. The system when the variable y1 is transmitted 
 
Also, 1 2 0 1 0y x R f (x ) V cos( t)= − ⋅ + ⋅ ω⋅ ,  
y1 is the transmitted signal from the master circuit. So, 
from the above equations we take,  

( )2 2 0 1 1 0s ' (x x ') R f (x ') f (x ) V cos( t)= − + ⋅ − + ⋅ ω⋅  (7) 
In the case of synchronization, 0s ' s V cos( t)= = ⋅ ω⋅ .  
 
2.1.2 Coupling via nodes-2 
At the second case, we have coupled the circuits 
(master-slave) via nodes-2, (Fig.6). 
 

 
 
Fig. 6. The system when the variable y2 is transmitted 
 
The slave circuit is described by the following set of 
equations. 
 

1
1 2

2 2 2 3

2
1 2

4 5 4 5

0 1 1 2

dx ' 1 1x ' x '
dt C R C R

dx ' 1 1x ' y     
dt C R C R

                    
s ' R f (x ') x ' y

= − ⋅ + ⋅
⋅ ⋅

= ⋅ + ⋅
⋅ ⋅

= ⋅ + +

       (8) 

 

where, 2 1 0 1 0y x R f (x ) V cos( t)= − − ⋅ + ⋅ ω⋅ ,  
y2 is the transmitted signal from the master circuit. So, 
from the above equations we take,  

( )1 1 0 1 1 0s ' (x ' x ) R f (x ') f (x ) V cos( t)= − + ⋅ − + ⋅ ω⋅   (9) 
In the case of synchronization, 0s ' s V cos( t)= = ⋅ ω⋅ .  
 
 
3. Experimental Results 
We have studied this method of synchronization for 
the first case of coupling (§ 2.1.1), when the two 
circuits  

• are identical,  
• coupled via a linear resistor and 
• have different values of elements. 

The same results apply also at the second case of 
coupling. 
 
 
3.1 Identical Circuits 
In this case, the two coupled circuits have exactly the 
same values of elements, so the two coupled circuits 
have the same parameters, a=0.25, b=1, ε=0.18, ω= 0.8 
and B=20. In Fig.7, the transmitted signal y1 is shown. 
It is a chaotic signal. 
 

 
 

Fig.7. Waveforms of the transmitted signals y1 
(Horiz.: 0.5 msec/div., Vert.: 1V/div.) 
 
The synchronization of two circuits is perfect as we 
observe from the comparison of the waveforms of the 
information s(t) and recovered s΄(t) signals, (Fig.8), 
and from the plot of s΄(t) vs. s(t), (Fig.9). 
 
 
 

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp179-184)



 
 

(a) 
 

 
 

(b) 
 

Fig.8. Waveforms of (a) information signal s(t), (b) 
recovered signal s΄(t), (Horiz.: 0.5 msec/div., Vert.: 
1V/div.) 
 

 
 

Fig.9. Plot of s΄(t) vs. s(t) (Horiz.: 1V/div., Vert.: 
1V/div.). Synchronization is observed.   
 

3.2 Resistive coupling 
If the two circuits are coupled via a linear resistor Rx, 
we observe that, as the value of Rx increases, 
synchronization collapses, (Fig.10). Specifically, as we 
can see in Fig.10(a), for Rx=10Ω the synchronization 
holds, but for Rx=20Ω, (Fig.10(b)), the recovered 
signal is not further identical to the transmitted. 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
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(d)  
 

Fig.10. Waveforms of recovered signal s΄(t), (a) 
Rx=10Ω, (b) Rx=20Ω, (c) Rx=40Ω, (d) Rx=80Ω 
(Horiz.: 0.5 msec/div., Vert.: 1V/div.) 
 
Finally, for greater values of Rx, that is for Rx=40Ω, 
(Fig.10(c)), and Rx=80Ω, (Fig.10(d)) the deformation 
is obvious.  
 
 
3.3 Different Values of Elements 
In this case, we have chosen a bit different values for 
the capacitors of the slave circuit, C2=106.2nF, 
C4=9.76nF, and also the resistor R2=5.233Ω, so we 
have again the same values of parameters a=0.25, b=1, 
ε=0.18, ω=0.8 and B=20. As we can see from the 
Fig.11, the information signal and the recovered signal 
have a slight divergence at the peaks. The same result 
turns up from Fig.12, in which we see that the diagram 
diverges from the straight line near the edges.  
 

 
 

Fig.11. Waveforms of information signal s(t), 
recovered signal s΄(t), (Horiz.: 0.5 msec/div., Vert.: 
1V/div.) 

 
 
Fig.12. Plot of s΄(t) vs. s(t) (Horiz.: 1V/div., Vert.: 
1V/div.)   
 
 
4. Conclusions 
In this paper we have studied the inverse system 
approach of synchronization. We have applied this 
method to a Duffing-type circuit, and we have 
presented two different implementations of the slave 
circuit.  
 The proposed method seems to work well, 
when the two circuits (master – slave), have exactly 
the same values of elements (identical). We have 
checked this method in the case of coupling the two 
circuits via a resistor, Rx. We have observed that the 
synchronization holds for small values of Rx. Also, we 
discovered that if we choose a bit different values of 
elements, we have a slight divergence between the two 
signals (information – recovered). So, we conclude 
that this method of synchronization is very sensitive at 
the variation of the values of the elements and of the 
external conditions.   
 
 
Acknowledgements 
This work has been supported by the research program 
“EPEAEK II, PYTHAGORAS II”, with code number 
80831, of the Greek Ministry of Education and E.U. 
 
 
References: 
[1] Pecora L. M., Carroll T.L., Synchronization in 
Chaotic Systems, Phys. Rev. Lett., Vol. 64,1990, pp. 
821-824. 
[2] Pecora L. M., Carroll T.L., Driving Systems with 
Chaotic Signals, Phys. Rev. A, Vol. 44, 1991, pp. 
2374-2383. 
[3] Carroll T.L., Pecora L.M., Synchronizing Chaotic 
Circuits, IEEE Trans. Circ. Syst. CAS, Vol. 38, 1991, 
pp. 453-456. 

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp179-184)



[4] Tass P., Rosemblum M.G., Weule M.G., Kurths J., 
Pikovsky A., Volkmann J., Schnitzler A., Freund H.J., 
Detection of n:m Phase Locking from Noise Data: 
Application to Magnetoencephalography, Phys. Rev. 
Lett., Vol. 81, 1998, pp. 3291-3294. 
[5] Schafer C., Rosemblum M.G., Kurths J., Abel 
H.H., Heartbeat Synchronized with Ventilation, 
Nature, Vol. 392, 1998, pp.239-240.  
[6] Neiman A., Xing Pei, Russell D., Wojtenek W., 
Wilkens L., Moss F., Braun H. A., Huber M. T., and 
Voigt K., Synchronization of the Noisy 
Electrosensitive Cells in the Paddlefish, Phys. Rev. 
Lett., Vol. 82, 1999, pp. 660–663. 
[7] Bazhenov M., Huerta R., Rabinovich M. I. and 
Sejnowski T., Cooperative Behavior of a Chain 
Synapticaly Coupled Chaotic Neurons, Physica D, 
Vol. 116, 1998, pp. 392-400. 
[8] Van Wiggeren G. D. and Roy R., Communication 
with Chaotc Lasers, Science, Vol. 279, 1998, pp. 
1198-1200.  
[9] Meng Zhan, Gang Hu, and Junzhong Yang, 
Synchronization of chaos in coupled systems, Phys. 
Rev. E, Vol. 62, 2000, pp. 2963-2966. 
[10] Wang Jinlan, Chen Guangzhi, Qin Tuanfa, Ni 
Wansun, and Wang Xuming, Synchronizing 
spatiotemporal chaos in coupled map lattices via 
active-passive decomposition, Phys. Rev. E, Vol. 58, 
1998, pp. 3017-3021. 
[11] Kyprianidis I.M, Stouboulos I.N., Chaotic 
Synchronization of Two Resistively Coupled 
Nonautonomous and Hyperchaotic Oscillators, Chaos 
Solitions and Fractals, Vol. 17, 2003, pp. 317-325. 
[12] Dedieu H., Kennedy M.P. and Hasler M., Chaos 
Shift Keying: Modulation and Demodulation of a 
chaotic Carrier Using Self-Synchronizing Chua’s 
Circuits, IEEE Trans Circ. Syst-II, Vol. 40, 1993, pp. 
634-642. 
[13] Tse C.K. and Lau F., Chaos-based Digital 
Connunication Systems: Operating Principles, 
Analysis Methods, and Performance Evaluation, 
Berlin, New York: Springer Verlag, 2003. 
[14] Cuomo K.M. and  Oppenheim A.V., Circuit 
Implementation of Synchronized Chaos with 
Applications to Communications, Phys. Rev. Lett., 
Vol. 71, 1993, pp. 65-68. 
[15] Wu, Chai Wah, Chua, L. O., A Simple Way to 
Synchronize Chaotic Systems with Applications to 
Secure Communication Systems, Int. J. Bif. Chaos, 
Vol. 6, 1993, pp.1617-1627. 
[16] Lozi R. nad Chua L.O., Secure Communications 
via Chaotic Synchronization. II: Noise Reduction by 
Cascading two Identical Receivers, Int. J. Bif. Chaos, 
Vol. 3, 1993, pp.1319-1325. 

[17] Orgozalek M.J., Taming Chaos Part I: 
Synchronization, IEEE Trans. Circ. Sys. I, Vol. 40, 
1993, pp. 693-699. 
[18] Orgozalek M.J., Taming Chaos Part II: Control, 
IEEE Trans. Circ. Sys. I, Vol. 40, 1993, pp. 700-706. 
[19] I. M. Kyprianidis I. M., Ch. K. Volos and 
Stouboulos I. N., Suppression of Chaos by Linear 
Resistive Coupling, WSEAS Trans. Circ. Syst., Vol 4, 
2005, pp. 527-534. 
[20] Carroll T.L., Communicating by Use of Filtered, 
Synchronized Chaotic Signals, IEEE Trans. Circ. Syst. 
I, Vol. 42, 1995, pp. 105-110. 
[21] Feldmann U., Hasler M. and Schwartz W., 
Communication by Chaotic Signals: The Inverse 
System Approach, Int. J. Circ. Theory Appl., Vol. 24, 
1996, pp. 551-579. 
[22] Bohme F. and Schwartz W., The Chaotizer-
dechaotizer channel, IEEE Trans. Circ. Syst., Vol. 43, 
1996, pp. 569-599. 
[23] Leuciuc A., The Realization of Inverse System 
for Circuits Containing Nullors with application in 
Chaos Synchronization, Int. J. Circ. Theory Appl., 
Vol. 26, 1998, pp. 1-12. 
 
 

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp179-184)


