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Abstract: We have studied the dynamics of Chua’s canonical circuit, when the v-i characteristic of the 
nonlinear resistor of the circuit is a smooth cubic function. Unlike the monotone bifurcation behavior of the 
members of Chua’s circuit family with a piecewise linear resistor, reverse period doublings, as a parameter of 
the circuit is varied in a monotone way, have been observed in the circuit we have studied. Dynamics of the 
circuit is very sensitive to initial conditions, as chaotic attractors coexist with period-1 limit cycles. 
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1   Introduction 
Electric circuits have emerged as a simple yet 
powerful experimental and analytical tool in 
studying chaotic behavior in nonlinear dynamics. 
Most chaotic and bifurcation effects cited in the 
literature have been observed in electric circuits e.g. 
the  period-doubling  route  to  chaos [1-4],  
intermittency  route  to  chaos [5-8],  
quasiperiodicity  route  to  chaos [9-11], crisis 
[12-14], antimonotonicity [15,16]. Chua’s circuit is 
a paradigm for chaos [17]. Among the members of 
Chua’s circuit family, the autonomous canonical 
Chua’s circuit introduced by Chua and Lin [18] is of 
considerable importance. This is because it is 
capable of realizing the behavior of every member 
of the Chua’s circuit family [18, 8, 14]. It consists of 
two active elements, one linear negative conductor, 
and one nonlinear resistor with odd-symmetric 
piecewise linear υ-i characteristic. 
For a piecewise-linear nonlinearity, very extensive 
literature exists on theoretical, numerical and 
experimental aspects of the dynamics of the 
members of Chua’s circuit family. The reasons for 
the previous choice of a piecewise-linear 
nonlinearity were the following: 
• The corresponding circuits can be easily built with 
off-the-shelf components. 
• Explicit Poincaré map can be derived which 
allows a rigorous mathematical proof, that Chua’s 
circuit is chaotic in the sense of Shil’nikov’s 
theorem. 

Later, some bifurcation phenomena were obtained 
for Chua’s circuit with a smooth nonlinearity, in 

particular, cubic nonlinearity [19,20]. The choice of 
a cubic nonlinearity has several advantages over a 
piecewise-linear one. It does not require 
absolute-valued functions and it is smooth, which is 
desirable from a mathematical perspective. 
Moreover, all phenomena found in the piecewise 
linear version also exist in the cubic version, e.g. 
Hopf bifurcation phenomenon requires  
functions and in the piecewise-linear case the 
corresponding phenomenon is not really Hopf but 
Hopf-like: in particular, the amplitude of oscillation 
jumps suddenly from 0 to a finite amplitude. 

3C

Cascades of period-doubling bifurcations have 
long been recognized to be one of the most common 
routes to  chaos, as exemplified e.g. by the 
one-dimensional (1−D) logistic map 

( )+1n n 1 nx x xλ= − . As the parameter λ in such  a 
map is increased, it is known that periodic orbits are 
only created but never destroyed. Unlike the 
monotone  bifurcation behavior of the logistic map, 
however it has been shown that, in many common 
nonlinear dynamical  systems, periodic orbits can 
be both created as well as destroyed, via reverse 
bifurcation sequences as a parameter is varied. 
Dawson et al., [21], named this type of creation and 
annihilation of periodic orbits antimonotonicity. 

Reversals of period-doubling cascades have 
been observed in various nonlinear physical 
systems both numerically and experimentally. In 
one of the first studies of this phenomenon [22], the 
occurrence of such reverse sequences was 
connected to the dynamics of a cubic 1−D map. As 
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examples of numerical simulations, we cite the van 
der Pol  equation [23], Duffing’s oscillator [24], a 
RC-ladder chaos generator [25], and an autonomous 
4th-order nonlinear electric circuit [26]. 
Experimental manifestations of  antimonotonicity 
have also been observed on the  driven R,L,p-n 
junction nonlinear circuit [2,27,28], and on Chua’s 
circuit, with an asymmetric v-i characteristic [29].  
In this paper, we have studied the dynamics of 
Chua’s canonical circuit [18] with an odd 
symmetric cubic nonlinearity and we have focused 
on the phenomenon of antimonotonicity, which 
has never observed in the members of Chua’s 
circuit family with a piecewise linear symmetric 
i-v characteristic. 

 
 

2  The Canonical Chua’s Circuit 
Chua’s canonical circuit is a nonlinear 
autonomous 3rd-order electric circuit (Fig.1). The 
nonlinear element is a nonlinear resistor, while Gn 
is a linear negative conductance. In this paper, the 
v-i characteristic of the nonlinear resistor is a 
smooth cubic function, Fig.2, of the form 
 

3
N 1 C1 3i k v k v= − + C1      (1) 

 
where , instead of the piecewise linear 
type-N characteristic used in the previous studies 
[8,14,18]. The laboratory realization of this 
nonlinear resistor can be found in [19]. 

1 3k , k 0>

 

 
Fig.1. Chua’s canonical circuit 

 

 
Fig.2. The cubic v-i characteristic of the nonlinear 

resistor. 
 

The state equations of the circuit are the following: 
 

( 3C1
L 1 C1 3 C1

1

dv 1
i k v k v

dt C
= + − )     (2) 

( )C2
L C

2
n

dv 1
i G v

dt C
= − + 2      (3) 

( )L
C1 C2 L

di 1
v v Ri

dt L
− + −=      (4) 

 
 
3  Dynamics of the Circuit 
We have chosen the following values for the 
circuit parameters: L = 100 mH, R = 330 Ω, and Gn 
= −0.40 mS, while k1 = 0.3 mS and k3 = 0.1 
mA/V3. Giving constant values to capacitance C1, 
we have plotted the bifurcation diagrams vC1 vs. 
C2. The comparative study of the bifurcation 
diagrams gives the qualitative changes of the 
dynamics of the system, as C1 takes different 
discrete values.  

 

 
Fig.3. The bifurcation diagram, vC1 vs. C2, for 

C1 = 41.0 nF. 
 

 
Fig.4. The bifurcation diagram, vC1 vs. C2, for 

C1 = 40.0 nF. 
 

The bifurcation diagram, vC1 vs. C2, for C1 = 41.0 nF 
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is shown in Fig.3. As C2 is decreased, the system 
always remains in a periodic state following the 
scheme: period−1 → period−2 → period−1 (or p−1 
→ p−2 → p−1). Bier and Bountis, [22], named this 
scheme “primary bubble”. The bifurcation diagram 
vC1 vs. C2, for C1 = 40.0 nF is shown in Fig.4. The 
system remains again in a periodic state, but a 
period−4 state is now formed. 

As C2 is decreased, chaotic states appear, as we 
can observe in Fig.5, where the bifurcation 
diagram vC1 vs. C2, for C1 = 39.5 nF is shown. The 
bubble is now chaotic. Chaotic states become 
enlarged, as C2 is decreased (Figs.6-9). For all the 
bubbles, the initial and the final dynamic state is a 
period−1 state, so the bubbles are “period−1 
bubbles”. 

 

 
Fig.5. The bifurcation diagram vC1 vs. C2, for 

C1 = 39.5 nF. 
 

 
 

Fig.6. The bifurcation diagram vC1 vs. C2, for 
C1 = 39.0 nF. 

 
Reverse period doublings are destroyed, when 

C1 = 36.0 nF (Fig.10). A sudden transition, from a 
chaotic to a periodic state is observed at C2 = 31.0 
nF, a phenomenon called crisis,[30]. In Fig.11, the 
chaotic spiral attractor (C2 = 31.0 nF) is shown, 
while in Fig.12 the periodic attractor (C2 = 30.8 
nF) is shown.  

 

 
 

Fig.7. The bifurcation diagram vC1 vs. C2, for 
C1 = 38.0 nF. 

 
 

 
 

Fig.8. The bifurcation diagram vC1 vs. C2, for 
C1 = 37.0 nF. 

 
 

 
 

Fig.9. The bifurcation diagram vC1 vs. C2, for 
C1 = 36.5 nF. 
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Fig.10. The bifurcation diagram vC1 vs. C2, for 

C1 = 36.0 nF. 
 

 
Fig.11. Phase portrait for C1 = 36.0 nF and C2 = 31.0 

nF. Chaotic spiral attractor. 
 

 
Fig.12. Phase portrait for C1 = 36.0 nF and C2 = 

30.8 nF. Limit cycle. 
 
 

4  Discussion and Conclusions 
Bier and Bountis, [22], demonstrated that reverse 
period doubling sequences are expected to occur, 
when a minimum number of conditions is 

fulfilled. Their main result was, that a reverse 
period doubling sequence is likely to occur in any 
nonlinear system, where there is a symmetry 
transformation, under which the state equation 
remains invariant.  

Indeed our system of differential equations 
(2-4) under the transformation 

C1 C1 C2 C2 L Lv v v v i ,   ,  → − → − → −i   (5) 
remains invariant. In addition, it has also been 
demonstrated in the literature, [22,31], that reverse  
period doubling commonly arises in nonlinear  
dynamical systems involving the variation of two 
parameters. It is important, however, that the period 
doubling “trees” develop symmetrically towards 
each other along some line in parameter space. This 
would allow them to terminate, by joining their 
“branches” to form “bubbles”, thus exhibiting the 
phenomenon of antimonotonicity. 

We have to notice, that antimonotonicity is 
present, when the well-known “double-scroll” 
Chua’s attractor is absent. This is an explanation, 
that antimonotonicity has not been observed in 
Chua’s circuit with a piecewise linear resistor, 
although the former criteria are fulfilled. 

The creation of bubbles is also very sensitive to 
initial conditions. The spiral attractors coexist with 
limit cycles like the one in Fig.12, so the circuit can 
be driven to two quite different states, depending on 
the initial condition. 
 

 
Fig.13. Chaotic spiral attractor for C1 = 36.5 nF, C2 

= 32.0 nF and initial conditions (vC1)0 = 
−1.20V, (vC2)0 = −1.65V, and (iL)0 =  
−2.0mA 

 
As an example, in Fig.13, the chaotic spiral 

attractor is shown for C1 = 36.5 nF and C2 = 32.0 
nF and initial conditions (vC1)0 =  −1.20V, (vC2)0 =  
−1.65V, and (iL)0 =  −2.0mA, while in Fig.14, a 
period-1 limit cycle is shown for C1 = 36.5 nF and 
C2 = 32.0 nF and initial conditions (vC1)0 =  
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+0.20V, (vC2)0 =  −1.65V, and (iL)0 =  −2.0mA. 
The power spectra of the two attractors are shown 
in Figs. 15 and 16, and they have not anything 
common. The high peak in Fig.15 corresponds to a 
frequency of 2700 Hz, while the frequency of the 
periodic limit cycle is 3500 Hz, so this trajectory is 
not embedded in the chaotic attractor. 

 
Fig.14. Period-1 limit cycle for C1 = 36.5 nF, C2 = 
32.0 nF and initial conditions (vC1)0 = +0.20V, 
(vC2)0 = −1.65V, and (iL)0 =  −2.0mA. 
 

Coexisting attractors play an important role in 
dynamics of identical coupled nonlinear systems, 
especially in the case of synchronization. 
 

 
Fig.15. Power spectrum of the chaotic spiral 
attractor of Fig.13. 

 

 
Fig.16. Power spectrum of the periodic attractor of 
Fig.14. 
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