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Abstract: - This paper deals with the vibrational control of a recycled bioprocess, which takes place into a 
Continuous Stirred Tank Bioreactor (CSTB). The classical control techniques for bioreactors necessitate 
measurements of states and/or disturbances. However, the bioprocesses are systems that require costly and 
difficult on-line implementation for sensors. Vibrational control is a non-classical open-loop control method, 
developed by Bellman, Bentsman and Meerkov, useful for the cases when the instrumentation is not available 
or is very expensive. The vibrational control is applied by means of zero mean parametric vibrations for 
shaping the response of a linear or nonlinear system. In this work, the design of a vibrational control for a 
CSTB with recycle stream is presented. Numerical simulations are considered in order to illustrate the 
performances of the vibrationally controlled bioprocess. 
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1   Introduction 
Feedback or feedforward control techniques can be 
used in order to achieve a desired change in the 
behaviour of a system. The problem is that these 
strategies require on-line measurements. In some 
cases, the instrumentation is not available or is very 
expensive. This is the case of the bioindustry, where 
the cheap and reliable instrumentation is missing. A 
possibility to overcome this problem is the 
application of the so-called vibrational control. 
     Vibrational control (VC) is a non-classical open-
loop control method proposed by Bellman, 
Bentsman and Meerkov [2], [3], [9]. The “classical” 
theory of VC for linear systems was developed by 
Meerkov in [9] and extended to nonlinear systems 
by Bellman et al. [2], [3]. Others significant results 
are obtained by Lehman et al. [6], [7] for time lag 
systems with bounded delay. Applications of the 
vibrational control theory can be found for: 
stabilization of plasma, lasers [8], chemical reactors 
[5], biotechnological processes [10], [11], [12].  
      The VC technique is applied by oscillating an 
accessible system component at low amplitude and 
high frequency. The amplitude and the frequency of 
the control input are constants and independent of 
the state of the system, therefore this technique is a 
form of open-loop control.     

     The Section 2 of this paper deals with the 
presentation of the model of bioprocess that takes 
place into a CSTB with recycle stream. The dynamic 
model, the equilibrium points, the linearization 
around an equilibrium point and the phase portrait 
are analysed in this section. In Section 3, the VC 
theory for time-lag systems is presented. The 
vibrational control strategy is developed for the 
recycled bioprocess, using a linearized model. The 
existence and the choice of stabilizing vibrations, 
which ensure the desired behaviour for the 
bioprocess, are also analysed. Illustrative numerical 
simulations are included. Concluding remarks are 
collected in Section 4. 
 
 
2   Model of the Recycled Bioprocess 
A bioreactor is a tank in which several biological 
reactions occur simultaneously in a liquid medium. 
In industry, the bioreactors operate in three modes: 
the continuous mode, the fed-batch mode and the 
batch mode [1], [10]. Bioreactors that operate in the 
continuous mode are usually known as Continuous 
Stirred Tank Bioreactors. In a CSTB, the substrates 
(the nutrients) are fed to the bioreactor continuously 
and an effluent stream is continuously withdrawn 
from the CSTB such that the culture volume is 
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constant. Often, a part of the biomass is recycled. To 
recycle, the biomass must be separated from the 
substrate and yield, then travel through pipes after 
separation. This time of recycle introduce delays in 
the states and complicates the dynamic. The benefits 
are that the recycle increases the overall conversion 
and reduces the costs.  
     The dynamical state-space model of a 
biotechnological process in a CSTB expresses the 
mass balance of the components in the bioreactor 
[1], [11]: 
 

 1121
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where 21, ξξ  represent the biomass and the limiting 
substrate concentrations [g/l]. Sin is the influent 
substrate concentration and D is so-called dilution 
rate [h-1], i.e. the specific volumetric outflow rate. In 
(1), (2) µ  is the specific growth rate and k1 > 0 the 
yield coefficient. The bioprocess (1), (2) is in fact a 
fermentation process, which usually occurs in a 
bioreactor. 
     In the CSTB with recycle stream, a part of the 
biomass is recycled. If the recycle occurs, then the 
bioprocess model (1), (2) must be rewritten [12]: 
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    The model (3), (4) is a prototype model for some 
depollution bioprocess, like the activated sludge 
bioprocess, which recycle a part of biomass [13].  
    In (3), Dq)-(1 ⋅  is the recycle flow rate. The 
constant q varies from 0 to 1, with zero 
corresponding to total recycle and 1 to no recycle. 
The constant r is the recycle delay time and Fin is the 
input flow. A compact representation of the state-
space model (3), (4) is: 
 

 )(ξ=ξ f&                   (5) 
 

where [ ]T21ξξ=ξ  is the state vector and the 
function ( )⋅f  is the nonlinear vector function 

[ ]Tfff ),(),,()( 212211 ξξξξ=ξ .  
     The equilibrium states of (3), (4) are of two 
types: 
1. Wash-out equilibrium states (E3), defined by:   
(E1) [ ] [ ]Tin

T
sss DF /021 =ξξ=ξ                (6) 

This equilibrium is in fact a state when the bacterial 
life has disappeared. 
2. Operational equilibrium states (E2), implicitly 
defined by: 
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     Equilibria (E1) correspond to the bioreactor 
wash-out, therefore only equilibria (E2) have a 
technological interest.  
     These equilibria can be attractive or repulsive 
depending on the particular form of ).,( 21 ξξµ  Only 
these equilibria have a practical interest. Let’s 
assume that the specific growth rate is:   

iM KK /
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     This is the Haldane kinetic model of the specific 
growth rate [1]. KM is the Michaelis - Menten 
constant, Ki the inhibition constant and 0µ  the 
maxim specific growth rate. Next, we suppose that 
the form of the specific growth rate is the Haldane 
kinetic model (8) that takes into account substrate 
inhibition on the growth. Then, from (7) we have 
two possibilities for the equilibria (E2): 
 

 (a)
qDk
DF

qDk
DF sin

s

N
sin

s
1

1,2
1,1

1

2
1

ξ−
=ξ=

ξ−
=ξ ; 1,22 s

N

s ξ=ξ  

(9) 
 

 (b)
qDk
DF

qDk
DF sin

s

N
sin

s
1

2,2
2,1

1

2
1

ξ−
=ξ=

ξ−
=ξ ; 2,22 s

N

s ξ=ξ  

(10) 
     The case (a) corresponds to a stable equilibrium 
point (stable node). The case (b) leads to a saddle 
type for the equilibria (E2) [12]. 
     The phase plane corresponding to the system (3), 
(4) for the values of the process parameters: 

,6 1
0

−=µ h  ,/10 lgK M =  ,/100 lgKi =  ,11 =k  
,6.3 1−= hD  lgSin /100= , Fin = 41 h-1 g/l, q = 0.8, r 

= 0.25 h and for different initial conditions is 
represented in Fig. 1. From this picture it can be 
seen that when the substrate inhibition appears, the 
process can exhibit unstable or, maybe worse, the 
evolution leads to wash-out steady-states, for which 
the microbial life has disappeared and the reactor is 
stopped. In these situations, the bioprocess requires 
control to stabilize the CSTB. Also, in many cases, 
the stable equilibrium point corresponding to (a) is 
not technological operable (requires a big initial 
amount of biomass). Furthermore, a bigger value for 
the delay time can induce a worst behaviour. 
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Fig. 1. Phase plane of the recycled bioprocess 
 
     The conclusion is that for the CSTB with recycle 
stream it is necessary to design a control strategy. 
     For control purposes, it is necessary to find the 
linear approximation of the system (3), (4) or 
equivalent (5) around the equilibrium point (E2). 
The linear approximation for given constant inputs 
D and Fin is: 
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where the matrices A0 and A1 are obtained after 
straightforward calculations for the specific rate (8): 
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     Let’s consider: 
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Then the linear model (21) becomes: 
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     The characteristic equation of the linearized 
system (14) around the equilibria (E2) is a 
transcendental equation: 
 

( ) 0det 10 =−−λ λ− reAAI               (15) 
 

     For a small delay time r, the equation (15) can be 
approximated with the equation: 

( ) 0det 10 =−−λ AAI                (16) 
 

     The roots of equation (15) decide the stability of 
the equilibria. For the operational equilibrium point 
(b), which is interesting from technological point of 
view, after some calculations, from (16) we obtain 
that this point is unstable (see Fig. 1) [12]. The delay 
time influences the stability properties; therefore, 
this equilibrium point of the initial system (5) is 
indeed unstable. The goal of the control strategy is 
to stabilize the equilibrium point (10). 
 
 
3   Vibrational Control Design 
  
3.1 Problem statement 
A general theory of vibrational control was 
developed by Bellman et. al. [2], [3], who presented 
the criteria for vibrational stabilizability and 
vibrational controllability of linear and nonlinear 
systems. 
     Consider a nonlinear system given by the 
equation: 
 

),( α= xfx&                 (17) 
 

with nmn RRRf →×: , nRx∈  is a state and 
mR∈α  is a parameter, in fact a vector that contains 

the system parameters. Suppose that for a fixed 
0α=α  the system (17) has the equilibrium 

)(α= ss xx . Let introduce now in (17) parametric 
vibrations according to the law: 
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where 0α  is a constant vector and g(t) is an almost 
periodic vector function with average equal to zero 
(APAZ vector). Then (17) becomes: 
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     Definition 1 [2]: An equilibrium point )( 0αsx  of 
(17) is vibrationally stabilizable if for any 0>δ  
there exists an APAZ vector g(t) such that (19) has 
an asymptotically stable almost periodic solution 

)(tx s  characterized by: 
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     Definition 2 [2]:  An equilibrium point )( 0αsx  
of (17) is totally vibrationally stabilizable if it is 
vibrationally stabilizable and furthermore, 
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== consttx s )( )( 0αsx , Rt ∈∀  
 

     Definition 3 [2]: An equilibrium )( 0αsx  is 
partially vibrationally stabilizable with respect to i-
th component if for any 0>δ  exists an APAZ 
vector g(t) and const=α1  such the system 
 

 ))(,( 1 tgxfx +α=&                (22) 
 

has an asymptotically stable almost periodic solution 
)(tx s , the i-th component of which is characterized 

by: 
 δ<α− )( 0si

s
i xx                (23) 

 

      The vibrational stabilizability problem consists 
of finding conditions for existence of stabilizable 
vibrations. Meerkov has demonstrated since 1980 
[9] that for linear systems vibrational stabilizability 
implies total stabilizability. If the matrix A of the 
linear system 
 

Axx =&                  (24) 
 

is a nonderogatory matrix, i.e. the minimal and 
characteristic polynomials coincide, a sufficient 
condition of vibrational stabilizability is: 
 

tr(A) < 0                (25) 
 

     Parametric vibrations can stabilize the linear 
system only if they have a so-called multiplicative 
form: 
 

g(t) = B(t)x                (26) 
 

     If B(t) is periodic, then the condition (25) is also 
necessary [9]. 
     Once the conditions for existence of vibrational 
stabilizability are settled for a system, it is necessary 
to solve another important problem: finding the 
specific form of stabilizing vibrations. This problem 
is referred as vibrational controllability [3]. 
     The VC theory was extended by Lehman et al. 
[6], [7] for time lag systems with bounded delay. 
The obtained results demonstrated the viability of 
VC technique as a possible alternative to feedback 
for time lag systems. 
     Let’s consider the linear time lag system: 
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where x is the state and r the time delay. Consider 
also the linear almost periodic system: 
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Define the averaged equation corresponding to (28) 
as: 
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     Lemma 1 [6]: Assume that all the roots of the 
)det( rAeI λ−−λ  have nonzero real parts. Then exists 

0ε >0 such that for any 00 ε≤ε<  the trivial 
solution of (28) has the same stability properties as 
that of (29). 
     Consider now the system with vibrations: 
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with nxnRRRF →× ++:  periodic in the first 
argument zero average matrix (PAZ matrix) and 

.10 <ε<  
     Definition 4: The trivial solution of the system 
(51) is said to be totally vibrationally stabilizable if 
there exists a PAZ matrix ),( εtF  such that the 
trivial solution of the system with vibrations (30) is 
asymptotically stable. 
     Remark 1: The system with vibrations (30) can 
be interpreted as the result of introduction of a 
parametric excitation into the matrix A0. 
     The problem of vibrational stabilization for 
system (27) consists of finding condition for 
existence of totally stabilization vibrations and 
finding the concrete stabilizing vibrations. 
     Theorem 1 [6]: Suppose that: 
 (i) there exists a PAZ matrix B(t) such that the state 
transition matrix )0,(tΦ  of 
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is asymptotically stable. 
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 (b) the trivial solution of the system (27) is totally 
stabilizable by the vibrations: 
 

 )(1)(),( txtBtxtF ⋅






ε

⋅
ε

=⋅ε               (34) 
 

if  0ε≤ε .  
     The Theorem 1 reduces the vibrational 
stabilization problem for linear time lag systems of 
form (27) to this strategy: first we induce an 
asymptotic stability of the system (33) by the correct 
choice of the PAZ matrix B(t), and second we must 
find the value of 0ε  (analytically possible, but 
recommended via numerical simulation). 
 
3.2 Design of VC for the recycled bioprocess 
The basic idea of vibrational controlled CSTB is to 
vibrate the flow rates and in this way to operate the 
bioreactor at average conversion rates which were 
previously unstable. By using this technique is 
possible to eliminate significant expenses associated 
with feedback. Since the vibrations depend only on 
time and not on the value of states, there no longer 
was a need to take measurements of concentrations. 
     The design of VC for CSTB with recycle stream 
represented by the nonlinear model (3), (4) is based 
on the linearized time lag system (11), (12), (13) (or 
equivalent (14)) around the operational point (E2). 
From Fig. 1 it can be seen that the equilibrium (10) 
of (E2) is unstable and it is necessary control in 
order to stabilize this operational point. 
     The linear time lag system (14) is obviously of 
the form (27). For the implementation of the 
vibrational control following the methodology of the 
subsection 3.1, we choose the PAZ matrix B(t): 
 

 
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where R∈α . The form of the matrix B suggests 
that the control action consist in vibrating the input 
flow rate, i.e. the inlet substrate rate. From (35), 
(12), (13), the state transition matrix of (31), the 
averaged matrix 0A and the averaged matrix 1A  for 
our bioprocess are (see Theorem 1): 
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     Therefore, if the matrix B(t) is (35), the 
vibrational controlled bioreactor is described by: 
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     The system (36) is of the form (30) written in the 
terms of the CSTB with B(t) from (35). The average 
controlled system is in this case the following: 
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     In conclusion, for α  chosen such that all the 
roots of the characteristic equation (32): 
 

0)det( 10 =−−λ λ− reAAI  
 

are negative real parts, the vibrations of the form 
(35) stabilize for ε  sufficiently small the trivial 
equilibrium of the linearized system (14). 
     Remark 2: The vibrational control is applied in 
the case of the CSTB with recycle stream for a 
linearization around the operational point, therefore 
the unique equilibrium of the linearized time lag 
system (24) is trivial (the origin). 
     Simulation results. The simulation values are 
furnished in the previous section. The time evolution 
of the linearized CSTB around the unstable 
equilibrium is depicted in Fig. 2. The origin is 
unstable in this case. When the VC is implemented 
the simulation of (36) for 01.0,5 =ε=α  leads to 
the time evolution depicted in Fig. 3. The state 
trajectories go to the unique equilibrium point in the 
case of linear systems - the origin. The average 
behaviour of the recycled bioprocess with vibrations 
is described by (37). Fig. 4 shows the averaged 
phase portrait of CSTB. It can be seen from the 
phase portrait that the saddle-type of equilibrium 
from Fig. 1 is stabilized. 
 

 
Fig. 2. State trajectories of initial unstable system 
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Fig. 3. Time evolution of the controlled bioprocess 
 

 
Fig. 4. Averaged phase portrait of the bioprocess 
 
 

4   Conclusions 
The results reported in this paper demonstrate that in 
some cases, the open-loop vibrational control can be 
successful used. VC is in fact a form of high-
frequency control technique (high-frequency relative 
to the natural frequency of the system). A 
comparison between this technique and others' high-
frequency methods - like sliding mode control and 
dithering - can be done. A main difference between 
VC and these methods is that in vibrational case, a 
component of the system is vibrated independent of 
the state; therefore the control is a function 
depending only on time. 
     The practical engineering VC problem can be 
described as a three step technique: first it is 
necessary to find the conditions for existence of 
stabilizing vibrations, second to find which 
parameter or component is physically possible to 
vibrate and finally to find the parameters of 
vibrations that ensure the desired response. The 
study done in this work shows that vibrational 
control can stabilize a previously unstable steady 
state of a recycled bioprocess.  
     For the vibrational technique to be effective, one 
needs to have an accurate description of system 

dynamics. This fact together with physical limitation 
on the magnitude and the frequency of vibrations in 
some cases are the disadvantages of the technique. 
The major advantage is the ability to ensure a 
desired behaviour when the measurements are not 
on-line. The results can be extended in the future to 
the nonlinear time lag system case. 
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