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Abstract: - A nonlinear adaptive controller for a class of nonlinear plants with incompletely known and time 
varying dynamics is presented. It is based on a recurrent neural network used as a dynamical model of the 
plant. The adaptive controller design is realized by using an input-output feedback linearizing technique. The 
model parameters, that is the controller parameters are updated on-line such that the behaviour of closed loop 
system is closely to those of a linear system. A local convergence of the algorithm is provided for the case of 
constant reference output. Computer simulations are included to illustrate the performances of the proposed 
controller. 
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1   Introduction 
In recent years, there has been considerable research 
activity in the applications of neural networks (NN) 
to identification and control of nonlinear systems 
[1], [2], [6], [7], [9]. It is well known that the NNs 
can be considered as general tools for modelling 
nonlinear functions [3].  

It must be noted that in most of the above results, 
the role of neural networks is usually a model that 
can mimic a nonlinear input-output relation. Another 
main advantage of using a NN in a control 
application is that it can dynamically store 
complicated nonlinear control algorithms and recall 
them instantly where demanded. Furthermore, the 
learning capability of the NN enables the resulting 
controller to adapt itself to possible variations in the 
controlled plant dynamics while in operation. 

In this paper, recurrent neural networks are used 
as models of the unknown plant, practically 
transforming the originally unknown system, to a 
dynamic neural network model. The structure of this 
model is known but it contains a number of 
unknown constant parameters namely the network 
weights. The ability of recurrent neural networks to 
learn static and dynamic highly nonlinear systems is 
a well-known property [4], [10]. Mainly, this is a 
reason why the recurrent neural networks have 
concentrated many research activities, especially in 
the area of identification and more recently in 
control. However, when one uses models to develop 
control algorithms, the presence of a modelling error 
term, which is unavoidable, could destroy the 

stability of the system. As a result of these 
considerations, in this paper will be presented some 
aspects of the stability properties of the closed loop 
system. Moreover, the convergence properties of the 
determined control algorithm are provided in the 
case when the output reference has a constant value. 

The paper is organized as follows: in Section 2, it 
is stated the problem and the form of the recurrent 
neural network model, while in Section 3 the 
adaptive control algorithm and update laws are 
developed. An application to a real process is 
presented in Section 4. Section 5 concludes the 
paper. 
  
 
2   Problem Statement 
Consider the multi-input/multi-output square non-
linear dynamical systems (that is systems with as 
many inputs as outputs) of the form: 

Cxy

uxGxfuxgxfx
n

i
ii

=

+=+= ∑
=

)()()()(
1

&
                (1)           

with the state nx ℜ∈ , the input nu ℜ∈  and the 
output ny ℜ∈ . nnf ℜ→ℜ:  is an unknown 
smooth vectorfield called the drift term and 

][ 21 ngggG K=  is a matrix whose columns are the 
unknown smooth vectorfields nn

ig ℜ→ℜ: , 
ni ...,,1= . The relative degree of (1) is equal to 1 

and the states x are assumed available.  C is a nn ×  
constant matrix. Thus, particularly, in the second 
equation in (1) C can be equal to identity matrix.  
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Note that the functions f and gi ( ni ...,,1= ) 
contain parametric uncertainties which are not 
necessarily linear parameterizable. 

In this paper we deal with the control problem of 
the processes described by the model (1). The 
control objective is to make output y of the system 
(1) tracks a specified trajectory denoted n

refy ℜ∈ . 
However, the problem, as it is stated above for the 
process (1), is very difficult or even impossible to be 
solved since the vectorfields f and gi ( ni ...,,1= ) are 
assumed to be completely unknown. Therefore, in 
order to provide a solution to our problem, it is 
necessary to have a more accurate model for the 
unknown plant. For that purpose, in order to model 
the nonlinear system (1) we use dynamical neural 
networks.  

Dynamical neural networks are recurrent, fully 
interconnected nets, containing dynamical elements 
in their neurons. They can be described by the 
following system of coupled first-order differential 
equations: 
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or in a compact form 
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 where the state nx ℜ∈ˆ , the input nu ℜ∈ , W is a 
nn ×  matrix of adjustable synaptic weights, A in a 
nn ×  diagonal matrix with negative eigenvalues, B 

is a nn ×  diagonal matrix with elements the scalars 
ib , ni ...,,1=  and 1+nW  is a nn ×  diagonal matrix of 

adjustable synaptic weights, of the form =+1nW  
}{ 1,1,1 =+ nnn wwdiag L . )(xΦ  is a n-dimensional 

vector and )(xΨ  is a nn ×  diagonal matrix, with 
elements the activation functions )( ixφ  and 

)( ixψ  respectively, both smooth, monotone increa-
sing functions, usually represented by sigmoids of 
the form: 

ixi e
mx

11
)(

δ−+
=φ ,  θ+

+
=ψ

δ− ixi e
mx

21
)( , ni ...,,1=  

 where m and 2,1, =δ kk  are constants representing 
the bound and the slope of sigmoid’s curvature 
respectively, and θ > 0 is a constant that shifts the 
sigmoid, such that 0)( >ψ ix  for all ni ...,,1= . 

A bloc diagram of this dynamical neural network 
is shown in Fig.1. 

 
 
 

                     x&̂            x̂  
   ∫ dt  

 
 
  

        ×    
Fig.1. The bloc diagram of dynamical neural network  
 
 
3   Control Strategies 
In this section, by using the feedback linearization 
techniques, we present two nonlinear controllers for 
the system (1): a nonlinear inverse dynamic 
controller and an adaptive controller using recurrent 
neural networks.  
 
 
3.1   Nonlinear inverse dynamic controller 
Firstly, we consider an idealized case where 
maximum prior knowledge concerning the process 
is available. In particular, we suppose that the 
functions )(⋅f  and )(⋅G  in process model (1) are 
completely known and all state variables are 
available for on-line measurements.  

Assume now that we wish to have the following 
first order linear stable closed loop (process + 
controller) dynamical behaviour: 

0)()( =−Λ+− yyyy
dt
d

refref               (4) 

with nidiag ii ,...,1,0},{ =>λλ=Λ       
Then, by combining the equations (1) and (4) we 

obtain the following multivariable decoupling 
linearizing feedback control law 

( ) ( )ν+−= − )()( 1 xCfxCGu                (5) 

with ( ) 1)( −xCG assumed invertible, which applied to 
the process (1) result in 

ν=y&                (6) 
where ν  is the new input vector designed as 

)( yyy refref −Λ+=ν &               (7) 

The control law (5) leads to the following linear 
error model: 

tt ee Λ−=&                (8) 

where yye reft −= represent the tracking error. It is 
clear that for nii ,...,1,0 =>λ , the error model (8) 
has an exponential stable point at 0=e .   

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp173-178)



3.2   Neural network adaptive controller 
Because the prior knowledge concerning the process 
assumed in the previous subsection is not realistic, 
in this subsection we analyze a more realistic case, 
where the dynamical process (1) is unknown, that is 
the functions )(⋅f  and )(⋅G  are completely 
unknown and time varying. To solve the control 
problem, a recurrent neural network (3) is used as a 
dynamic model of the process based on which 
control law is synthesized. 

Assume that the unknown process (1) can be 
completely described by a dynamical neural 
network. In other words, there exist weight values 

*W and *
1+nW  such that the process (1) can be 

written as: 
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=
Ψ+Φ+= + )()( *

1
*&

               (9) 

where all matrices are as defined previously.  
Now the tracking problem is analyzed for the 

system (9) instead of (1). Since *W and *
1+nW  are 

unknown, our solution consists in designing a 
control law ),,( 1 xWWu n+  and appropriate update 
laws for W and 1+nW  such that the network model 
output y  track a reference trajectory refy . The 
evolution of the network model output (9) can be 
expressed as: 

uxCBWxCBWCAxxCy n )()( *
1
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Assume that )(*
1 xCBWn Ψ+  is invertible which 

implies relative degree equal one for input-output 
relation (10). Then, the following linearizing control 
u is given by 

( ) ( )ν+ξΦ−−Ψ=
−

+ )()( *1*
1 CBWCAxxCBWu n    (11) 

 
where the new input vector ν  is defined as  

)( yyy refref −Λ+=ν &                       (12) 

which applied to the network (9) results in it being 
decoupled and linear with respect to this new input.  

ν=y&                         (13) 

Defining the error between the network output 
and the reference trajectories as 

reft yye −=                        (14) 

then the control law (12) leads to the following error 
model: 

tt ee Λ−=&                        (15) 

It is clear that for nii ,...,1,0 =>λ , the error 
te converges to the origin exponentially. 

Note that the control-input (11) is applied to both 
plant and neural model.  

Now, we can define the modelling error between 
the neural network output and real system output as 

yye Nm −=                        (16) 

Then, from equations (9) and (3) we obtain the 
following error equation: 

uxWCBxWCBCAee nmm )(~)(~
1Ψ+Φ+= +&             (17) 
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Because the control law (11) contains the 
unknown weight matrices W  and 1+nW , this 
becomes an adaptive control law if the matrices W  
and 1+nW  are substituting by their on-line estimates 
calculating by appropriate updating laws. Since we 
are interested to obtain stable adaptive control laws 
the Lyapunov synthesis method is used. Consider 
the following Lyapunov function candidate: 
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where 0>P  is chosen to satisfy the Lyapunov 
equation 

IPAPA T −=+                        (20) 
Differentiating (19) along the solution of (17) 

and (15) where C is considered to be equal to 
identity matrix and using (18), finally we obtain: 
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If we chose 

m
TTT BPeWxWWtr ~)(}~{ Φ−=&                        (22) 
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then (21) becomes: 
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From (22) and (23), for network weights, we 
obtain the following updating laws: 

njiexpbw mijiiij ...,,1,,)( =φ−=&              (25) 
nieuxpbw miiiiini ...,,1,)(1, =ψ−=+&                  (26) 

Now, we can prove the following result:  
Theorem 1. Consider the control scheme (11), 

(15), (17). The updating laws (25) and (26) 
guarantees the following properties: 
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Proof. Since V&  is negative semidefinite (see  
(24)), we have that ∞∈ LV , which implies that 

∞+ ∈ LWWee nmt 1
~,~,, [10]. Since V  is a non-

increasing function of time and bounded from 
below, then there exists )()(lim ∞=

∞→
VtV

t
. Therefore, 

by integrating V&  from 0 to ∞  we have 

∞<∞−=





 +∫

∞

)()0(||||||||
2
1

0

22 VVdtee tm  

which implies that 2, Lee mt ∈ . By definition, the 
sigmoidal functions )( ixφ  and )( ixψ , ni ...,,1=  are 
bounded for all x  and by assumption all inputs to 
the neural network, inclusive refy  and its time 
derivative, are also bounded. Then, from (17) we 
conclude that ∞∈ Lem& . Since ∞∩∈ LLe 2  and 

∞∈ Lem& , using Barbalat’s Lemma [11], one obtains 
that 0)(lim =

∞→
temt

. Using now the boundedness of 
1,, +nWWu  and the convergence of )(tem  to zero, 

we have that W& and 1+nW&  also converge to zero.  
 
 
4   A Working Example 
The simulations were conducted in the context of a 
nonlinear continuous biotechnological process for 
which dynamical kinetics and yield coefficients are 
not exactly known. The model used in this work 
corresponds to microalgae fermentation process and 
is described by the following differential equation 
system [8]:   

VXFXX in /−µ=&                     (27a) 

VFSSXYS inins /)(/1 −+µ−=&                  (27b) 
VFCqXC intt /3/1 −=&                   (27c) 

with X, S, Ct and inS , the biomass, the substrate, the 
toxin and the influent substrate concentrations, V the 
volume of the liquid phase, inF  the total volumetric 
feed rate, µ the specific growth rate, sY  the yield 
coefficient, and q is the toxin production constant. 
The parameters appearing in this description are 
complex functions of the variables of interest. The 
yield coefficient sY  is given by 
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where M and k are real positive constants, and the 
specific growth rate )(⋅µ  is described by the 

following nonlinear inhibited modified Monod 
model: 
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where mµ  is the maximum specific growth rate, Ks 
is the Monod constant, iK  is the substrate inhibition 
constant, and tK  is toxin inhibition constant. 

If we denote by T
tCSXx ][= , the state vector, 

and VFu in /1 =  and VSFu inin /2 = , the control 
inputs variables, the bioreactor model equations can 
be rewritten in the form of (1) as follows: 
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and the drift vector field f and the input vector fields 
21 , gg  are therefore: 
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The actual outputs of the system are identical 
with two states of the system Xy =1 , Sy =2 . It 
can be seen that the first and the second equations in 
(30) have the relative degree one. With the previous 
definitions, the decouplation matrix in (5) is 
particularized as follows: 
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In a normal operation of bioreactor the biomass 
concentration can not be identically zero. This 
results from the fact that if 0→X  would imply 
total washout of the species population. Then we 
state 0≠X  which is sufficient for 

2))(( =xCGrank .   
 
 
4.1   Nonlinear inverse dynamic controller 
If we consider that the kinetics and yield coefficients 
in the fermentation model are known, then the 
exactly linearization feedback control  
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where the references refX  and refS  are piecewise 
constants, lead to the following error models: 

111 ee λ−=& ;     222 ee λ−=&                      (34) 
with  

XXe ref −=1 ;  SSe ref −=2                       (35) 
 
 
4.2   Neural network adaptive controller 
In the equations (30) describing the fermentation 
process model we assume now that only the terms 

1Xu  and 12 Suu −  (which depend upon the inputs) 
are known. The first and the second equations in 
(30) can now be written in the form 

1222
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where )(1 xη  and )(2 xη  are considered as unknown 
functions. As in the previous case our objective is to 
determine 1u  and 2u  so that X and S follow the 
desired outputs refX  and refS . If 1u  and 2u  can be 
chosen as 
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the resulting error equations have the form of (34). 
Because of the functions )(1 xη  and )(2 xη  are not 
known our objective is to estimate these unknown 
functions on-line using a neural network of the form 
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Hence, 1u  and 2u  in (37) are modified so that 
)(ˆ 1 ⋅η  and )(ˆ 2 ⋅η  are used in place of )(1 xη  and 
)(2 xη , where 1η̂  and 2η̂  are on-line estimations of 

1η  and 2η . Then, the resulting error equations have 
the form 

22222
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The used neural network has two inputs ( 1u  and 
2u ) and two outputs ( 1η̂  and 2η̂ ). The parameters 
ijw  and 1, +niw  )2,1,( =ji  are adjusted using the 

errors 1e  and  2e  respectively, according the rules 
(25) and (26). The initial values of the weights and 
the design parameters were chosen as: 





= 5.05.0

5.05.0)0(W ; 



=+ 05.0

05.0)0(1nW ; 

m1 = 10,  m2 = 20,  δ1 = δ2 = 1,  θ1 = θ2 = 0, a1 = -5, 
a2 = -15, b1 = 0.2, b2 = 0.1, p1 = 0.55, p2 = 0.15. 

For a proper comparison of the two control 
strategies, the simulations were carried out under 
identical conditions and the results were judged 
using the same set of criteria. The initial conditions 
and the kinetics and yield parameters are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.2. Simulation results for neural adaptive control by comparison to nonlinear inverse dynamic control: 

1 – nonlinear inverse dynamic control;  2 – neural adaptive control 
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X(0) = 35, S(0) = 1, Ct(0) = 1, Sin(0) = 150, Fin(0) = 
20; µm = 0.135, Ks = 0.05, Ki = 2150, Kt = 5.5, M = 
0.0196, k = 0.147, q = 0.0296, V = 200. 

The bounds on control inputs are 
15.0/0:1 ≤≤ VFu in ;  45/0:2 ≤≤ VFSu inin  

which are imposed by physical constraints and feed 
rate and input substrate concentration, respectively. 

The simulation experiments were designed so 
that several set point changes on the controlled 
variables, biomass concentrations X and limiting 
substrate concentrations S occurred. The responses 
of the overall system for 15.121 =λ=λ  are given in 
Fig.2.  

While the nonlinear inverse dynamic controller 
(34) requires maximum prior information, it also 
yields the best response and can be used as a 
benchmark to evaluate the performances of other 
controllers that require less prior information. It can 
be seen that the responses of the overall system with 
neural adaptive controller, even if this used much 
less priority information, are comparable to those 
obtained using the exact linearizing controller. 
 
 
5   Conclusions 
This paper is concerned with the using of dynamical 
neural networks in an adaptive linearizing control 
problem, when the plant under consideration is 
described by a square multivariable model with 
relative degree one for every equation. The 
technique employed for arriving at the convergence 
result is also presented. Since, in most situations, the 
process nonlinearities are not known sufficiently 
accurately, it can be concluded that adaptive 
controllers and neural network controllers are two 
viable alternatives.  
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