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Abstract: - The paper addresses the problem of the target-tracking in military surveillance operations. More
specifically, a closed-loop approach to adapt the sensing and tracking operations is proposed and compared to the
conventional open-loop approach. The objective is to control and maintain, over a certain area, the level of
discrimination power required by the mission objectives. The control strategy is based on two cascade loops. The
outer loop uses clustering techniques to characterize the area in terms of discrimination power. This high level
information is exploited by the inner loop to compute optimal track update and sensor scheduling strategy.
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1 Introduction

In military Command and Control (C2) applications,
target tracking uses data fusion technology to provide
accurate and timely identification, classification, and
kinematics information about the entities within the
area of interest. To improve the process of data fusion,
and make it cope with a larger class of problems, the
processing and the resources it uses must be constantly
managed and coordinated [1–3]. This defines the disci-
pline of adaptive data fusion. The adaptation closes the
loop over the fusion sensing and processing capabili-
ties and develops options for collecting further infor-
mation or tuning the processing/sensing parameters for
the real-time improvement of the process effectiveness.

This paper presents part of the research activities,
conducted at Defence R&D Canada, that aim at defin-
ing, developing, and demonstrating adaptation con-
cepts. More specifically, the paper addresses the prob-
lem of adapting the target-tracking operations and at-
tempts to demonstrate the benefits of such adaptation
compared to the open-loop operation mode. The adap-
tation is achieved thanks to a two-level cascade loop,
the objective of which is controlling the discrimination
power over a certain area of interest.

In situations involving multiple targets, the latter
may come too close to be clearly distinguishable from
each other by the surveillance system. Targets are said

to be distinguishable when the overlap between their
localization probability distributions is below a spe-
cific level called the disparity level. The concepts of
disparity is applied here to the problem of multiple tar-
get tracking, and a quantity called the discrimination
power is used to adjust the scan rate of the surveil-
lance system. The discrimination power measures the
distance between the least disparate among the n pairs
of target tracks at a given instant. Operations such as
contact/track correlation, target identification and clas-
sification are very sensitive to the disparity between
tracks. This may also be an issue in the target engage-
ment operations. Given the criticality of the latter situ-
ation, a high discrimination power is often required to
maximize the chance of threat neutralization and min-
imize the risk of collateral damages. In this paper, a
solution is presented that: i) characterizes the whole
area of interest based on the concept of discrimina-
tion power, where distinct regions are created and man-
aged dynamically based on the targets spatial structure
using clustering and classification techniques; and ii)
controls the discrimination power over that area of in-
terest, by an appropriate selection of the track update
frequency and sensor scheduling within each distinct
region.

The remaining part of the paper is organized as fol-
lows. Section 2 defines the (adaptive) data fusion prob-
lem. The specific problem of track-tracking is dis-

1

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp161-166)



cussed in Section 3. Section 4 introduces the concept
of discrimination power control and applies it in the
context of target tracking. The results of this applica-
tion are presented and discussed in Section 5. Section 6
gives some concluding remarks.

2 Adaptive Data Fusion Problem

Data fusion aims at supporting the decision maker in
improving his situation awareness. To achieve higher
performance, a modern data fusion system needs an ac-
tive feedback or adaptation. The adaptation may con-
cern the data fusion process itself or the related sensor
management problem.

Adaptation in the specific context of target tracking
aims at producing a system that can readily adapt to
changing operating environment and needs. An adap-
tive tracking system must be able to detect variations
in its performance index and respond to them by per-
forming structural changes. The performance measure-
ment and control process can be performed recursively
at different levels of abstraction, where the loop of level
n sets the objectives for the loop of level n − 1. The
latter selects the appropriate actions to achieve those
objectives. Associated with each adaptation loop is a
performance measure that provides the necessary feed-
back from the environment. Fig. 1 shows an example
of the two-level cascade loop.
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Fig. 1: Two-level Cascade Control Loop

3 Target Tracking Problem

In this section, the control structure of Fig. 1 is applied
to the specific problem of target-tacking, as depicted

in Fig. 2. The two loops operate at two different time-
scales, with the following objectives

1. Outer-loop: characterizes of the whole area of
interest based on the concept of discrimination
power, where distinct regions are created and
managed dynamically based on the targets spatial
distribution and by using clustering techniques.
To ensure a certain level of cluster persistence,
this loop operates at low frequency, as defined by
the basic period hc > hs in Fig. 2. Thus sen-
sor scheduling can be made by considering sev-
eral sampling intervals.

2. Inner-loop: adaptively controls of the discrimina-
tion power over the area of interest, by an appro-
priate selection of the track update frequency and
sensor scheduling within each distinct sub-area.
This adaptation loop operates at a faster time scale
than the outer loop (hs < hc). Note that the mini-
mal value for hs is a characteristic of the sensors.
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Fig. 2: Clustering/Discrimination Power-based Two-
Level Control Loop

3.1 Scenario

A scenario where a single (phased array like) sensor [4]
has to track several (N ) targets is considered. The
latter has the capability to switch the direction of its
beam very quickly (assumed instantaneously for the
problem being addressed) without inertia. The goal of
the control is then to maintain the appropriate dispar-
ity level between the tracks based on the region they
belong to. The control strategy should make the sen-
sor spend more time over critical regions, e.g. where
engagements involving hardkill weapons are planned.
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3.2 Tracking Algorithm

The following give the equations of the dynamical
model and the Extended Kalman Filter (EKF) [5] used
by the underlying tracking algorithm. The discrete-
time dynamical model of the targets is given by

xk+1 = f(xk) + Γυk (1)

zk+1 = h(xk+1) + wk+1 (2)

where x is the state vector, υ is the process noise
with covariance matrix Q, and w is the measurement
noise, whose covariance matrix will be denoted R. Γ
is the discretized continuous time process noise tran-
sition matrix. The time-update equations for the EKF
algorithm are given by

x̂k+1|k = Fkx̂k (3)

Pk+1|k = FkPkF
T
k + ΓQΓT (4)

where Fk is the Jacobian of f . The above-given pre-
dicted values are used to calculate the updated version
of the state and the corresponding covariance matrix.

P−1
k+1|k+1 = P−1

k+1|k + P−1
z (5)

P−1
k+1|k+1x̂k+1|k+1 = P−1

k+1|kx̂k+1|k + P−1
z zk+1 (6)

with

P−1
z = HT

k+1R
−1Hk+1 (7)

and where Hk is the Jacobian of hk, and k represents
the discretized time.

4 Discrimination Power Control

The discrimination power is a metric of the disparity
between multiple target tracks distributed in the space.
The disparity between two tracks is defined as a statis-
tical distance between the tracks’ latest state estimates
and is based on the probability distribution of each es-
timate. Track disparity expresses how much tracks are
dissimilar. Fig. 3 illustrates pairs of tracks’ estimates
with different levels of disparity, represented by a sta-
tistical distance d. The ellipsoids represent contours
of constant probability for the two-dimension and nor-
mally distributed position estimates of the tracks. As
can be seen in Fig. 3, the farther the position estimates
x̂1 and x̂2 are from each other in the space, the higher
is the track disparity (d1 > d2). Also, the smaller the
estimation error covariance matrices P1 and P2 are, the
higher is the track disparity (d2 > d3).

d1

d1 >  d2 > d3

d3

d2

Fig. 3: Statistical distance d as a track disparity metric

The evaluation of the discrimination power requires
calculating the statistical distance for each pair of
tracks. A statistical distance d between two estimates
x̂i of track i and x̂j of track j is provided by the Ma-
halanobis distance [6], which considers both the esti-
mates and their corresponding covariance matrices.

d(x̂i, x̂j) =
[
x̂i − x̂j

]T [
Pi + Pj

]−1[
x̂i − x̂j

]
(8)

where Pi and Pj are the covariance matrices for the
state estimates x̂i and x̂j respectively. The distances
for each possible pair of tracks are represented in the
N ×N proximity matrix D = [d(x̂i, x̂j)].

4.1 Track Update Control

A solution to control the track disparity (and the re-
lated discrimination power) consists of adjusting adap-
tively the time intervals between updates for the differ-
ent tracks. The time interval between measure updates
will also be referred to as the update period, which is
the inverse of the update frequency. It has a signifi-
cant influence over the variation in time of the track
accuracy (i.e., covariance matrix). Shorter periods be-
tween updates should yield higher track accuracy and
therefore higher disparity between tracks. Therefore,
the goal of an adaptive tracking system is to choose ap-
propriate update periods for each track in order to keep
a certain level of discrimination power within the area
of interest.

A straightforward discrimination power control so-
lution is to have each track’s own update period h be
proportional to the distance with its nearest neighbor,
according to the Mahalanobis distance. A track iwould
have an update period hi determined such that

hi = ζ

[
min

k
d(x̂i, x̂k)

]
, k ∈ 1, ..., N (9)
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where d(x̂i, x̂j) is as defined by Eq. 8 and ζ is a func-
tion that expresses the relation between h and d.

4.2 Hierarchical clustering of tracks

When regions of the area of interest are to be consid-
ered for controlling sensor scans, separating tracks into
clusters can provide a way to determine the desired up-
date strategy. Clusters of targets represent different re-
gions of the space with different discrimination power
levels. Agglomerative hierarchical clustering [6] is
suitable for controlling the discrimination power using
the region-based approach. With agglomerative hierar-
chical clustering, a binary tree is constructed based on
a linkage measure, where each leaf represents the pre-
dicted state estimate of a track. The linkage measure is
determined and related to the type of hierarchical clus-
tering algorithm.

A hierarchical cluster tree is created based on the
N×N proximity matrixD = [d(x̂i, x̂j)]. The process
of hierarchical clustering is as follows

1. Assign each track to a cluster to have N clusters.

2. Merge the closest pair of clusters where cluster
Ci and Cj are merged together to result in N − 1
clusters.

3. Compute distances between the new cluster and
each of the old clusters1.

4. Repeat Steps 2 and 3 until all tracks are clustered
into a single cluster of size N .

Fig. 4 shows an example of a cluster tree resulting
from the single-linkage algorithm. The tree is binary
with N − 1 nodes excluding the leaves representing
tracks. The highest nodes in the hierarchy have the
largest distance values. A threshold Lk applied on the
distances allows to group tracks into regions. The value
of the threshold determines how the tree is separated.
All nodes that are below the threshold will have their
corresponding tracks regrouped into the same cluster.
Each cluster of tracks occupies a particular region of
the space. The value of the threshold should depend

1The distance computation depends on the type of clustering
used. The following gives, for two clusters Ci and Cj , the resulting
distances dmin(Ci, Cj) and dmax(Ci, Cj), when single-linkage
and complete-linkage are used respectively

dmin(Ci, Cj) = min
x̂∈Ci,x̂′∈Cj

d(x̂, x̂′)

dmax(Ci, Cj) = max
x̂∈Ci,x̂′∈Cj

d(x̂, x̂′)

on the problem at hand, that is the number of targets
and their properties, the number of sensors and their
properties and most importantly the applications that
makes use of target tracking (e.g. surveillance, target
engagement).
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Fig. 4: Agglomerative clustering of tracks

4.3 Sensor Scheduling Heuristics

LetRn be the region occupied by clusterCn, for which
the discrimination power dn and the track similarity sn

are defined as follows

d−1
n = sn = min

i,j
d(x̂i

k, x̂
j
k), x̂i, x̂j ∈ Rn (10)

The two metrics dn and sn will be used to define
the optimal track update frequency and the scheduling
strategy. The update cycle length of the clusters is de-
fined as

hc = hsξψ = hsξ
K∑

n=1

ηn (11)

= hsξ

K∑
n=1

b d−1
n

mini∈{1,...,K} d
−1
i

c (12)

= hsξ

K∑
n=1

b sn

mini∈{1,...,K} si
c (13)

where K is the number of clusters and ξ is an inte-
ger defined arbitrarily. The integers ηn define the num-
ber of updates that will be performed for each region
within a single update cycle ψ. The latter is defined
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such that the tracks within the cluster that has the high-
est discrimination power (i.e., smallest sn) will be up-
dated only once, while the tracks within the other clus-
ters will be more than once.

It is assumed that the sensor has to spend a minimum
time ts over a region to report a contact. This defines a
maximum report frequency fs. The update frequency
for each cluster, as function of the sensor frequency fs,
is defined as follows,

fn = ξ−1ψ−1ηnfs

For regions that require more than one update, different
update scheduling strategies may be possible. Since
it is assumed that the sensor can be directed instanta-
neously, without extra cost, a scheduling strategy that
maximizes the quality (i.e., minimizes the uncertainty
ellipsoid) of the obtained tracks is adapted. This strat-
egy is described by Algorithm 1, where the objective is
to separate (in time) the updates of the same region as
much as possible in order to maintain a best quality of
track with the same number of updates.

S ← schedule vector of size ψ (update cycle length)
j ← k

∣∣ ηk = maxl∈{1,...,K} ηl

i← 1
while j > 0 do
S(i)← j
ηk ← ηk − 1
if j > 1 then
S(ψ + i− 1)← j
ηk ← ηk − 1

end if
i← i+ 1
j ← k

∣∣ ηk = maxl∈{1,...,K} ηl

end while

Algorithm 1: Sensor Scheduling Strategy

5 Results and Discussion

An application example with seven (7) targets has
been coded and the results are presented in this sec-
tion. Within the considered configuration, certain tar-
gets will come too close, at given time instants, to be
clearly distinguishable from each other, e.g. Target 1
and Target 7 at 5s, and Target 1 and Target 6 at 14s,
as shown on Table 1 where the closest pairs of targets
are given in terms of different simulation times.

Note that any well-defined distance on Rn may be
used as a proximity metric. The presented results and

Table 1: Closest pairs of targets in scenario.

Time (s) Closest pair Distance (m)
0 1 - 7 1300
5 1 - 7 10
10 1 - 6 1400
14 1 - 6 5
20 1 - 5 1100

the underlying development are based on the Maha-
lanobis distance.

Figures 5 and 6 present and compare the result-
ing track quality based on two different track update
strategies, for a tracking duration of 20sec. Dashed
ellipses give initial position and uncertainty for each
target. Plain ellipses are represented only to show fi-
nal position and uncertainty for each target, and also
where discrimination problems are expected, e.g., in-
tersections (Target 1, Target 6) and (Target 1, Target
7).

In Fig. 5 a static periodic update strategy was used,
where the different tracks are being allotted the same
attention without consideration of any additional in-
formation. On the contrary, Fig. 6 presents adaptive
update strategy whose objective is the control of the
discrimination over all the area of interest. More atten-
tion is allotted to critical regions, i.e., where discrimi-
nation power tends towards zero. Clusters are created
dynamically based-on spatial proximity, and the update
strategy is defined based on the track similarity in each
cluster.

Fig. 6 shows clearly the superiority of the adaptive
approach over the static update strategy. The discrim-
ination power is adaptively improved where required,
e.g., over intersections (Target 1, Target 6) and (Tar-
get 1, Target 7), by increasing the update rate over
the clusters created by the targets proximity. Targets
that do not need high discrimination power will belong
to distinct clusters that will be updated less frequently,
e.g., Target 3 and Target 4. For the least frequently
updated tracks by the adaptive strategy (i.e., Target
3 and Target 4), the obtained results show 1.32km2

vs. 1.0km2 with static for Target 3 and 1.11km2 vs.
.86km2 with static for Target 4.

6 Conclusion

The target tracking application is used to illustrate con-
trol and adaptation concepts in data fusion applica-
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Fig. 5: Track quality yielded by the static periodic up-
date strategy. Probability distribution contours are still
overlapped few seconds after targets have crossed.

tions. A two-loop adaptation structure is defined to
tackle the specific adaptive tracking problem. The
outer loop dynamically defines and manages the clus-
ters based on the concept of discrimination power,
while the inner loop exploits the clusters for the adap-
tation purposes. The presented results showed the su-
periority of the adaptation-based strategy over a static
policy. Extension of the proposed approach to the al-
gorithmic adaptation, where the fusion processing is
controlled instead of the sensor revisit rate, is straight-
forward. The performance of the different tracking
algorithms replaces the performance of the sensors,
and algorithms are dynamically allocated and sched-
uled, instead of sensors, to increase the discrimination
power within the clusters. A more general approach,
that combines both adaptation problems, is being ad-
dressed. Therein, the adaptation module selects the
most appropriate strategy for both sensing and track-
ing. Further improvement is being achieved through
the use of the Kinetic Data Structures (KDS) [7]. The
latter allows the management of the clusters and the
computation of the associated of discrimination power.
KDS provide an efficient means for the computation of
the different features that can be used in adaptive fu-
sion problems.
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