
On dispersion relations for acoustic flows in finite

alternating domains

Mikhail Deryabin and Morten Willatzen

Mads Clausen Institute for Product Innovation

University of Southern Denmark

Grundtvigs Alle 150, DK-6400 Sønderborg, DENMARK

Phone: +45 65 50 16 81

Fax: +45 65 50 16 60

e-mail: {mikhail,willatzen}@mci.sdu.dk

Abstract

A one-dimensional treatment of solutions to the flow-acoustic equations for a composed medium con-

sisting of a finite number of alternating materials layers A and B (for example water and air) is presented.

Special emphasis is given to mathematical properties of the solutions (more precisely, the stability of the

”trivial” zero-solution) and the possible wavenumber values. The discussion is intimately related to the dis-

cussion of bandgap formation in the dispersion relations as the number of A−B layers n increases towards

infinity. Estimates are given for the distribution of wavenumber values (β) as a function of n, in cases when

the trivial solution is either stable or unstable. We emphasize that the present analytical analysis allows

determination of distributed (in space domain) as well as surface solutions in one calculation.
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1 Introduction

In this paper we study the acoustic problem for pe-

riodically arranged materials (materials A and B)

in the 1-dimensional case, i.e., periodicity being ex-

tended only in one direction. We assume that a fluid

flows in one or both of the constituent media. We

study an acoustic band gap structure for the case,

when the domain consists of a finite (yet big) num-

ber of layers n. As the periodicity is 1-dimensional,

we can use simple analytical techniques to completely

describe the dispersion relations.

We first show that the acoustic equations in question

are linear Hamiltonian equations with periodic coef-

ficients. Thus, the question of whether the solution

for acoustic equations is bounded (in the infinite do-

main) reduces to the well-known problem of stability

of the zero solution of linear Hamiltonian equations:

if the zero solution is stable, then there cannot be un-

bounded solutions. The zero solution is stable, if the

absolute value of the trace of the monodromy matrix

A is less than 2, and we calculate this matrix for our

system.

Suppose that the number of layers n is big enough.

Then the asymptotics of the dispersion structure is

the following. In the stable areas, where |Tr(A)| < 2,

the distance between successive solutions is in the

order of order 1/n. In these areas, regions may also

exist where this distance can grow to O(1/
√

n). In

the unstable areas, where |Tr(A)| > 2, the distance

between successive solutions is in the order of 1. Both

the stable and the unstable regions do not depend on

n. An immediate consequence is that for the stable

regions the distance between successive solutions is

not uniformly distributed.

2 Equations of flow acoustics

Under the monofrequency condition, the linearized

equations for the acoustic flow are

iω

c2
p +

v0

c2

∂p

∂x
+ ρ0

(∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
= 0,

iωvx + v0
∂vx

∂x
+ vy

∂v0

∂y
+ vz

∂v0

∂z
= − 1

ρ0

∂p

∂x
,

iωvy + v0
∂vy

∂x
= − 1

ρ0

∂p

∂y
, (1)

iωvz + v0
∂vz

∂x
= − 1

ρ0

∂p

∂z
,

see Ref. [1] for details. Here v0 = (v0(y, z), 0, 0) is

the background flow, ρ0(y, z) is the pressure of the

background flow, p is the acoustic pressure, and v =

(vx, vy, vz) is the acoustic flow velocity.

We are looking for the solution of the following form:

∂p

∂x
= iβp,

∂v
∂x

= iβv. (2)
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Substituting relations (2) into equations (1), we

get the following expression for the pressure p, cf.

Ref. [1]:

1
ρ0(ω + βv0)2

∂2p

∂y2
− 1

ρ2
0(ω + βv0)2

∂ρ0

∂y

∂p

∂y
−

− 2β

ρ0(ω + βv0)3
∂v0

∂y

∂p

∂y
+

1
ρ0(ω + βv0)2

∂2p

∂z2
− (3)

− 1
ρ2
0(ω + βv0)2

∂ρ0

∂z

∂p

∂z
− 2β

ρ0(ω + βv0)3
∂v0

∂z

∂p

∂z
+

+
( 1

c2ρ0
− β2

ρ0(ω + βv0)2
)
p = 0.

We consider now the 1-dimensional case, when the

functions ρ0 and v0 do not depend on y, and we as-

sume that the pressure p does not depend on y either.

We have also assumed periodicity in z, i.e., both v0

and ρ0 are 2π-periodic functions of z. Then Equation

(3) can be written as

∂

∂z

( 1
ρ0(ω + βv0)2

∂p

∂z

)
+

( 1
c2ρ0

−

− β2

ρ0(ω + βv0)2
)
p = 0. (4)

This is the Lagrange equation, which describes the

linearized pendulum motion with the vibrating sus-

pension point. We can put Equation (4) into the

Hamiltonian form by introducing the canonical con-

jugate variable

q =
1

ρ0(ω + βv0)2
∂p

∂z
.

Equation (4) now becomes

q′ = −∂H

∂p
, p′ =

∂H

∂q
, (5)

where (·)′ = ∂/∂z, and the Hamiltonian equals

H(p, q) =
1
2

(
ρ0(ω + βv0)2q2 +

( 1
c2ρ0

−

− β2

ρ0(ω + βv0)2
)
p2

)
.

The Hamiltonian system (5) is integrable: this is a

consequence of the Lyapunov-Floquet theorem that

states that there exists a linear transformation p, q →
P,Q, which is 2π-periodic in z, that sends the linear

system (5) with 2π-periodic in z coefficients to the

linear system with the constant coefficients. How-

ever, for arbitrary functions ρ0 and v0, one cannot

find this variable transformation explicitly.

3 The monodromy matrix and

the wavevector

To determine the value of the wavevector x-

component β, one has to solve Equation (4) with

the following boundary conditions: for z = zL and

z = zR, the z-component of the pressure gradient

should be zero:

(∇p, ez) = ∂p/∂z = 0.

Let p = p(z, p(zL), p′(zL)) be the solution to Equa-

tion (4). Then the equation for β becomes

p′(zR, 1, 0) = 0. (6)
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Indeed, this equation is linear in p(zL), thus this value

can be set to 1.

Let n denote the number of the layers of materials A

and B. For big values of n, we may expect, that the

number of solutions β on a bounded interval may de-

pend on this interval. In the other words, the ”den-

sity” of solutions on an interval (βmin, βmax) may

vary.

We denote by ρA
0 , vA

0 and cA the values of the back-

ground density, fluid velocity and the velocity of

sound in the material A, and by ρB
0 , vB

0 , ca the cor-

responding values in the material B:

ρ0 = ρA
0 , v0 = vA

0 , c = cA for z ∈ [0, z1),

ρ0 = ρB
0 , v0 = vB

0 , c = ca for z ∈ [z1, 2π)

Both ρA
0 , vA

0 , cA, ρB
0 , vB

0 and cB are the functions of

z, and we assume that they are smooth. However, the

functions ρ0, v0 and c need not even to be continuous.

Equation (4) reads

p′ = FA
1 q, q′ = −FA

2 p, z ∈ [0, z1),

p′ = FB
1 q, q′ = −FB

2 p, z ∈ [z1, 2π), (7)

where the functions FA,B
1,2 equal

FA
1 = ρA

0 (ω + βvA
0 )2,

FA
2 =

1
c2
AρA

0

− β2

ρA
0 (ω + βvA

0 )2
,

(8)

FB
1 = ρB

0 (ω + βvB
0 )2,

FB
2 =

1
c2
BρB

0

− β2

ρB
0 (ω + βvB

0 )2

When we glue the solutions in the materials A and B

together, we demand that the canonical coordinates

q, p should be continuous, rather than p, p′ (cf., e.g.,

[2]). This is important for the derivative

∂

∂z

( 1
ρ0(ω + βv0)2

∂p

∂z

)

to be defined (in the generalized sense). To this ex-

tend, our model closely resembles the Ben Daniel-

Duke model.

Remark. One can see that the Hamiltonian formal-

ism is very useful for this kind of systems. First, the

canonical variables are continuous, while the deriva-

tive of the pressure pressure p′ is not. Second, the

Hamilton equations are regular when we tend both β

and ω to zero, which is important if we want to de-

termine the speed of sound in the composite media.

Our boundary conditions are now q = 0 for z = zL,

z = zR, and p = 1 for z = zL. Let zL, zR ∈ (0, z1)

(mod 2π).

A mapping p, q|z=0 → p, q|z=2π is linear and thus can
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be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p(2π)

q(2π)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p(0)

q(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where A is a constant matrix (i.e., ∂A/∂z = 0). This

matrix is called the monodromy matrix, and we write

it as a product of two matrices AL and AR, where the

matrix AL defines the mapping p, q|z=zL
→ p, q|z=2π,

and the matrix AR defines the mapping p, q|z=0 →
p, q|z=zR

. The equation for β now reads

⎛
⎜⎝ 0 , 1

⎞
⎟⎠ ARAnAL

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (9)

4 Wavenumber distribution for

the stable case: |TrA| < 2

We now assume that the trace |TrA| < 2 for any

values of the parameters. Then in the appropriate

coordinates the matrix A can be put into the follow-

ing form:

BT AB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos ψ λ sin ψ

− 1
λ sin ψ cos ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where B is the orthogonal matrix. The n-th power

An becomes now:

An = B(BT AB)nBT = B

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos nψ λ sin nψ

− 1
λ sin nψ cos nψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

BT

Let us rewrite Equation (9) as

λ1(β) cos nψ(β) + λ2(β) sin nψ(β) = 0 (10)

Suppose that λ2
1 + λ2

2 �= 0 for all β (this is a general

case). Then Equation (10) can be written as

sin
(
nψ + arccos

( λ1√
λ2

1 + λ2
2

))
= 0 (11)

Suppose that functions ψ, λ1, λ2 are smooth. The

structure of solutions to Equation (6) is described

by the following results. In the neighbourhood of a

”regular” point, i.e., such β that

∂ψ

∂β
�= 0,

the distance between the solutions is at most of order

1/n. More precisely, the following Theorem is true:
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Theorem 1. Consider an interval L, such that there

exists a constant c > 0, such that for any β ∈ L

|∂ψ

∂β
| ≥ c

Then there is a constant C > 0, that does not depend

on n, such that on any interval (β, β + C/n) ∈ L

there is at least one solution to Equation (6).

The proof rests on the following Proposition:

Proposition 1. Let β0 be such that

∂ψ

∂β
(β0) �= 0

Then there is a constant C̃ > 0, that does not depend

on n, such that for any n � 1 there exists a solution

β̃ to Equation (6) that satisfies

|β̃ − β0| ≤ C̃

n
.

Proof. If (λ2
1 + λ2

2)(β0) = 0, then β̃ = β0 and the

Proposition is proved. Let now (λ2
1 + λ2

2)(β0) �= 0.

Let k ∈ Z be such that

|nψ(β0) + arccos
( λ1√

λ2
1 + λ2

2

)
(β0) − πk| = α < π

Let β̃ = β0+ 1
nβ1. Substituting this relation to Equa-

tion (11), we get

nψ(β0) +
∂ψ

∂β
(β̃0)(β1) +

+arccos
( λ1√

λ2
1 + λ2

2

)
(β̃) − πk = 0

where β̃0 ∈ [β0, β0 + 1
n1/m β1]. Notice that this is an

exact equation. One can see that the expression

nψ(β0) +
∂ψ

∂β
(β̃0)β1 + arccos

( λ1√
λ2

1 + λ2
2

)
(β̃) − πk

changes sign on the interval β1 ∈ [−2π/c, 2π/c], if n

is sufficiently big, where c = |∂ψ/∂β(β0)|. Thus, on

this interval there is a solution to our equation, and

the interval itself does not depend on n. �

If we drop the condition |∂ψ/∂β| ≥ c, then the dis-

tance between the solutions may be of order 1/
√

n

instead of 1/n: this is the case for a typical ”degen-

erate” point, i.e., such β that

∂ψ

∂β
= 0,

∂2ψ

∂β2
�= 0.

Theorem 2. Let β0 be such that

∂ψ

∂β
(β0) = 0,

∂2ψ

∂β2
(β0) �= 0

Then there is an interval L1, mes(L1) > c/
√

n for

some c > 0 and the distance between L1 and β0 being

at most of order 1/n, such that there are no solutions

to Equation (6) in L1.

The point β0 needs not to belong the interval L1:

there may be some ”exceptional” values of n, such

that there are solutions in an O(1/n) of the degener-

ate point β0.

Proof. Take β̃ = β0+ 1√
n
β1 and substitute into Equa-
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tion (11). Then we get

n
(
ψ(β0) +

1
2

∂2ψ

∂β2
(β0)

β2
1

n
+ . . .

)
+

+arccos
( λ1√

λ2
1 + λ2

2

)
(β0) + . . . − πk = 0

As ∂2ψ/∂β2(β0) �= 0, one can choose β1 such that

|n(ψ(β0) +
1
2

∂2ψ

∂β2
(β0)

β2
1

n
) +

+arccos
( λ1√

λ2
1 + λ2

2

)
(β0) − πk| > 1

In the set of such values of β, one can pick up an

interval L1, such that mes(L1) > c/
√

n, which follows

by construction. �

Proposition 2. Let β0 be such that

∂ψ

∂β
(β0) = 0,

∂2ψ

∂β2
(β0) �= 0

Then there is a set of the parameters of positive

Lebesgue measure, such that for any N > 0 there

is n > N such that there exists a pair of solutions

β̃1,2 to Equation (6) that both satisfy

|β̃1,2 − β0| ≤ C

n

where the constant C does not depend on n.

Proof. Let ∂2ψ/∂β2(β0) > 0. For an arbitrary small

constant c > 0, there is a set of parameters of positive

measure, such that the Diofantine condition

|nψ(β0) + arccos
( λ1√

λ2
1 + λ2

2

)
(β0) − πk| >

c

n
(12)

is not satisfied for some sequence of values n. Take

such n � 1, and consider a solution of the form β̃ =

β0 + 1
nβ1. As above, we have to solve the equation

nψ(β0) +
1
2n

∂2ψ

∂β2
(β̃0)(β1)2 + (13)

+arccos
( λ1√

λ2
1 + λ2

2

)
(β̃) − πk = 0

Neglecting the terms of order 1/n2 and higher, we get

a quadratic equation for β1, that always have two real

solutions due to condition (12). The rest of the proof

is similar to Proposition 1. �

Summarizing the results for the stable case, i.e., when

|TrA| < 2, we see that most of wavenumbers β are

1/n-close to each other. There also can be gaps in

wavenumbers, that are of order 1/
√

n and are located

in an 1/
√

n-neighbourhood of zeroes of the derivative

∂ψ/∂β.

5 Distribution for wavenum-

bers for the unstable case:

|TrA| > 2

The situation is different in the unstable case: al-

though the gaps have the similar position, they are

now of order 1. Moreover, the distance between any

two solutions is also of order 1.
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The the matrix A can still be put into the eigenvector-

form:

BT AB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosh ψ λ sinh ψ

1
λ sinhψ cosh ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where B is the orthogonal matrix. The n-th power

An becomes now:

An = B

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosh nψ λ sinhnψ

− 1
λ sinhnψ cosh nψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

BT

As above, we rewrite Equation (9) as

λ1(β) cosh nψ(β) + λ2(β) sinh nψ(β) = 0 (14)

Suppose that λ2
1 − λ2

2 �= 0 for all β (this is a general

case), and also that λ1 > 0. Then Equation (14) can

be written as

sinh(nψ + φ) = 0, cosh φ =
λ1√

λ2
1 − λ2

2

(15)

For n → ∞, this equation has only solutions that are

close to zeroes of the function ψ(β).

Proposition 3. Let β0 be such that

ψ(β0) = 0,
∂ψ

∂β
(β0) �= 0.

Then there is an interval of order 1, containing β0,

such that on this interval there is precisely one solu-

tion to Equation (6). This solution is 1/n-close to

β0.

Proof. We rewrite Equation (15) as

ψ(β) +
1
n

φ(β) = 0,

and use the implicit function theorem: for n → ∞
this equation has (locally) only one solution β = β0,

as ∂ψ/∂β(β0) �= 0. For big, but finite values of n, the

solution will be 1/n-close to β0, and it can be found

by the same method as in the previous section. �

6 Bandgap structure

Numerical experiments show that the stable and the

unstable areas may be mixed with each other. As

an example, we consider the water-air mix, and we

assume that in each of the media the background

density ρ0, the media background velocity v0 and the

velocity of sound c are constants. The background

velocity in air is assumed to be zero. The band gap

areas are the sets, where |Tr(A)| > 2, see fig.1. Along

the horizontal line is the number of a solution, i.e., 1-

st, 2-nd, ..., 100-th, starting from the first one that

is greater than zero. On the vertical line are the

corresponding values of β.

The distribution of solutions when n → ∞ is the fol-
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Figure 1: Bond gaps for air-water mix. The seem-

ingly horizontal parts of the graph are the soltions

that lie in the stability regions. Notice that these

regions are very small compared with the unstable

regions.

lowing. In the stable areas, where |Tr(A)| < 2, the

solutions lie 1/n-close to each other, and in these ar-

eas there also may be regions, where the distance be-

tween two successive solutions may grow to O(1/
√

n).

In the unstable areas, where |Tr(A)| > 2, the dis-

tance between two successive solutions is of order 1.

It is important to note that the stable and unstable

regions themselves do not depend on n.

7 Conclusions

An analytical study of solutions to the flow-acoustic

problem for a material composed of alternating lay-

ers of materials A and B has been presented. De-

pending on the trace of the monodromy matrix, that

solutions are stable (trace less than 2) or unstable

(trace larger than 2). Asymptotics of distances in

wavenumber space have been given as the number of

A−B layers in the medium goes to infinity, including

a discussion of bandgap formation well-known from

solid-state physics applications. Finally, the present

analysis gives information about possible pressure so-

lutions including distributed and localized pressure

eigenstates in space domain.

The present analysis for phononic bandgap struc-

tures shows many similarities with the correspond-

ing analysis of photonic bandgap structures. In ac-

tual fact under some assumptions, they both obey

the Helmholtz wave equation for propagation in ho-

mogeneous steady media. Hence, many of the math-

ematical implications obtained in the present work

can to some degree be carried over to photonics ap-

plications.
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