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Abstract: - The Pareto Archived Evolution Strategy (PAES), one of the most successful evolutionary optimizers, 
has long been proven as an easy-to-implement algorithm due to its simple (1+1) search to solve for 
multiobjective problems. However, a recent comparative study with Multiobjective Simulated Annealing 
(MOSA), another potential heuristic search technique, showed that when the problems are constrained or 
becoming more complex, e.g. with a large number of control variables, PAES seemed not to explore the 
trade-off surface satisfactorily. By examining the nature of MOSA, this paper attempts to improve the 
performance of PAES by adding the sensitivity adjustment, one of the key characteristics of MOSA 
implementation. 
Based on 4 standard test problems with either a large number of control variables or with three or more 
objectives, comparative results indicate that the performance of the PAES algorithm with the addition of 
sensitivity adjustment has been improved significantly. In one test problem, the performance of PAES even 
outperforms that of MOSA. On-going research is on progress to extend the test covering a wide range of 
different complex optimisation problems. 
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1   Introduction 
Evolution Strategies (ES’s) [1] are one of 
probabilistic search heuristics that mimic principles 
of natural evolution. Over forty years, ES’s have 
been implemented and are now in a state where a 
variety of different variants have been proposed and 
research continues into many different directions, 
including applications, extensions of algorithms, and 
cross-mix with other evolutionary algorithms. ES’s 
can simulate natural evolution of livings existence by 
mutation and recombination of the selected 
population with mutation playing a more central role 
as the main driving mechanism of the algorithms. 
The early variant of an evolution strategy, the so 
called (1+1)-ES [1], works on the basis of two 
individuals, i.e., one parent and one offspring per 
generation and the offspring is mutated from the 
parent with normally distributed variations. Ongoing 
research efforts have led to the development of a 
variety of special variants of ES’s for solving more 
complex and multiobjective problems. One example 
is a Pareto Archived Evolution Strategy (PAES) [2] 
that, in its baseline form, employs local search for the 
generation of new candidate solutions but utilizes 
population information to aid in the calculation of 

solution quality. Performance comparison between 
PAES and other well-known and respected 
multiobjective GA’s such as the Niched Pareto 
Genetic Algorithm (NPGA) [3] and the 
Nondominated Sorting Genetic Algorithm (NSGA) 
[4] indicated that PAES was one of the most 
successful search methods [2, 5]. Recently, however, 
a comparative study with Multiobjective Simulated 
Annealing (MOSA) algorithm [6], another potential 
heuristic search technique, showed that when the 
optimisation problems are constrained or becoming 
more complex, e.g. with a large number of control 
variables, PAES seemed not to explore the trade-off 
surface very well [7]. This paper therefore attempts to 
improve the performance of PAES further by adding 
the sensitivity adjustment, one of the key 
characteristics of MOSA implementation, and 
illustrates its performance based on 4 standard test 
problems [8, 9]. 
 
2   Pareto Archived Evolution Strategy 
(PAES) 
The Pareto Archived Evolution Strategy (PAES), 
developed by Knowles and Corne [2], is one of the 
most popular evolutionary optimisers that uses a 
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simple (1+1) search to solve multiobjective problems 
successfully. Being evolutionary, PAES progresses 
by mimicking the nature of livings’ adaptation and 
survival, i.e., by mutating or adapting the 
representation of the problem itself (the control 
variables) in order to increase the chance of survival 
(the better objectives) and exist in the environment. 
The general structure of PAES algorithm can be 
summarized as follows [2]: 
1. Initialize a parent, evaluate its all objective 

functions and put it as the first member of 
solutions in the archive. 

2. Mutate a parent to produce an offspring and 
evaluate the objectives. 

3. Compare the offspring with the parent; 
3.1  If the offspring is dominated by the parent 

then discard the offspring and go to step 2.  
3.2  If the parent is dominated by the offspring, 

then update the offspring to become the next 
parent. 

4. Compare the offspring with members in the 
archive; 
4.1  If the offspring is dominated by any member 

in the archive then discard the offspring and 
go to step 2. 

4.2  If the offspring dominates any member in the 
archive, then add the offspring to the archive 
and remove all the dominated members. 

5. Test crowding procedure (for the offspring, the 
parent, and the archive) 

6. Go to step 2 and repeat until a predefined number 
of generations is reached. 

The control variables are normally encoded as a k-bit 
binary string in PAES with mutation probability, Pm 
= 1/k. 
 
3   Modification of Original PAES 
The implementation of the modified PAES was based 
on the original (1+1)-PAES proposed by Knowles 
and Corne [2] and added with the followings: 
 
3.1   Adding the Sensitivity Adjustment of 
Variables 
The first obvious modification that could improve the 
performance of PAES is the addition of sensitivity 
adjustment of MOSA implementation so that the 
modified PAES can handle both discrete and 
continuous control variables. It is clear that with 
continuous control variable, the search space is wider 
allowing more exploration into the potential 
solutions of the problem. However, with wider search 
space, more runtime may be needed to reach the final 
solutions. Hence, the intelligent adjustment of 
continuous variables is particularly suitable for 

complex problems, particularly those with high 
sensitivity, i.e. those with a small perturbation of 
variables can lead to significant change in objectives. 
Automatic adjustment of variable perturbation at 
each run can lead to the optimal search pattern as 
found in MOSA [6]. 
 
3.2   Introduction of Random Selection for 
Control Variable Mutation 
In original PAES, the control variables are encoded 
as a k-bit binary string with mutation probability, Pm 
= 1/k. At each iteration, only one bit of the control 
variables will be mutated and this will only occur if a 
generated random number at that iteration ≤ Pm. It is 
clear that, as the number of binary string becomes 
larger (which is the case when dealing with complex 
problems with many variables), there is less chance 
that mutation will ever occur. This limits the 
possibility of searching for optimal solutions caused 
by inadequate exploration of the search space. 
 
The modified version of PAES mimics the simulation 
of variable perturbation of general heuristic search 
methods. That is, at each iteration, every control 
variable should have an equal opportunity to be 
perturbed (mutated). This has been implemented by, 
first, randomly selecting the number of control 
variables to mutate (which can be in the range from 1 
to the total number of variables – i.e. every variable 
will be mutated), and second, perturbing those 
selected control variables. The variables to be 
perturbed will be identified with Roulette-wheel 
selection at each iteration. Fig.1 summarizes the 
algorithm of the modified PAES. 
 
4   The Test Functions 
Four standard complex test functions for 
evolutionary multiobjective optimisation [8, 9] were 
chosen for comparative purposes between the 
original (1+1)-PAES and the modified PAES. These 
are: 
 
F1 is two-objective minimisation with 30 control 
variables proposed by Zitzler et al. [8]. It is 
considered a complex problem because of the many 
control variables with Pareto optima lying on a 
specific set of these variables: 
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Initialize a parent, evaluate its all objective functions
Initialize this as the first member in the archive
Do
Mutate a parent (with random selection) to produce an offspring:

Random selection to identify a number of control variables (CV) to mutate
For i = 1 to i = CV

Roulette-wheel selection to identify the control variable
Perturb that control variable to produce a new value

Evaluate the objectives of a newly generated offspring
Compare the offspring with the parent;
If the offspring is dominated by the parent

Discard the offspring
Else if the parent is dominated by the offspring

Update the offspring to become the next parent
Compare the offspring with members in the archive
If the offspring is dominated by any member in the archive

Discard the offspring
If the offspring dominates any member in the archive

Add the offspring to the archive and remove all the dominated members
Else

Add the offspring to the archive
Else

Compare the offspring with members in the archive
If the offspring is dominated by any member in the archive

Discard the offspring
If the offspring dominates any member in the archive

Add the offspring to the archive and remove all the dominated members
Else

Add the offspring to the archive
Test crowding procedure for all the members in the archive

While (a predefined number of generations is not reached)
Return an archive of unique non-dominated solutions
 

Fig.1. Pseudocode for Modified PAES 
 
 

where m = 30 and ]1,0[1 ∈x . The Pareto optima is 
formed when 1)( =xg  and 0,..., 3032 =xxx . 
 
F2 is the test problem DTLZ1 [9], constructed as an 
M-objective problem with linear Pareto-optimal 
front: 
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m mf . The difficulty in this problem is to 

converge to this hyper-plane. 
 
F3 is the test problem DTLZ3 [9] that has a spherical 
Pareto-optimal front as shown in Fig.2: 
 

 

Fig.2. First quadrant of a unit sphere as a 
Pareto-optimal front for test problem F3 
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where )( Mxg  is given in Eq.(3). This introduces 
many local optimal fronts, on which any algorithm 
can easily get trapped. 
 

Pareto-
optimal
front
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F4 is the test problem DTLZ9 [9]. It is also a 
constrained problem, constructed using the constraint 
surface approach: 
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The Pareto-optimal front is a curve with f1 = f2 = … = 
fM – 1, lying on the intersection of all (M – 1) 
constraints. 
 
For test problem F2 to F4, they are indeed complex 
problems associated with many objectives from two, 
three to four and more. However, for the purpose of 
illustration and for clarification in the discussion of 
this paper, the results of these problems are shown 
only for three objectives. 
 
5   Results and Discussion 
Fig.3 shows the search pattern and the trade-off 
surface after 20000 iterations of the original PAES 
and modified PAES for the test problem F1 with 30 
control variables. It is clear that the modified version 
of PAES could result in a significant improvement in 
exploring the trade-off surface compared with the 
original version. From the search pattern, it can be 
seen that while the original PAES spent most time 
finding the solutions on a large and scattered region 
that did not lead to identifying the optimal solutions, 
the modified PAES focused exclusively near the 
Pareto front and hence, succeeded in identifying the 

optimal solutions of the problem F1 much more 
easily. 
Fig.4 shows the trade-off surface after 50000 
iterations of the original PAES and modified PAES 
for problem F2. Again, it can be seen that the 
modified PAES succeeded in identifying the Pareto 
front of the problem as a linear hyper-plane while the 
original PAES identified another hyper-plane that 
was further away and not near optimal as a set of best 
solutions found after 50000 iterations (all the 
problems are minimisation, hence the closer to the 
origin of the graph, the better). This can be explained 
by the same reason already described for the problem 
F1 – the original PAES spent all its time exploring 
only the region well above the Pareto front. This 
resulted in a failure in finding the true optimal 
solutions for the problem. The introduction of 
random selection for control variable mutation in the 
modified version of PAES allows the algorithm to 
jump and cross the line and search for solutions in 
other regions giving itself a better chance in 
identifying the true optimal solutions for the 
problem. 
Fig.5 shows the close-up on the trade-off surface 
after 50000 iterations of the original PAES and 
modified PAES for problem F3. This clarifies that the 
modified PAES could identify the trade-off surface 
for the problem as part of a unit sphere (see Figure 1) 
successfully, whereas, with the original PAES, not 
even the shape of the trade-off surface was formed. 
Dramatic improvement of algorithmic performance 
is clearly illustrated for this problem. 
 

 
 
 

  
Fig.3. Comparison of the search pattern and the trade-off surface after 20000 iterations between the original 

PAES and modified PAES for the test problem F1 
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Fig.4. Comparison of the trade-off surface after 50000 

iterations between the original PAES and modified 
PAES for the test problem F2 

 
Fig.5. Close-up of the trade-off surface after 50000 
iterations between the original PAES and modified 

PAES for the test problem F3 
 
 

 
Fig.6. Comparison of the trade-off surface after 
50000 iterations between the original PAES and 

modified PAES for the test problem F4 
 
 
Figs.6-7 show the trade-off surfaces of the original 
PAES, the modified PAES, NSGA II and SPEA II 
(the two alternative, efficient evolutionary algorithms 
recently developed to handle highly complex 
problems) for the test problem F4. Again, it is clear 
that the modified PAES performed better than the 
original PAES in these two problems – similar results 
to F1, F2 and F3. Although the modified PAES could 
not identify the complete Pareto fronts in problem 
F4, neither the NSGA II or SPEA II, could. Fig.7 
suggests that the performance of the modified PAES 
was comparable with that of NSGA II and SPEA II. 
 
 

6   Conclusions 
The comparison of algorithmic performance between 
the original PAES and the modified PAES on four 
standard test functions led us to the conclusion that 
the modified PAES that was implemented with the 
addition of sensitivity adjustment of continuous 
control variables and with the random selection for 
variable mutation, seemed to explore the trade-off 
surface better than the original PAES. Although the 
modified version of PAES did not explore the entire 
trade-off for many constrained problems presented 
here, its performance was comparable with that of 
other alternative, efficient evolutionary algorithms 
recently developed to handle highly complex 
problems, such as NSGA II and SPEA II. 
While the original PAES could not explore the 
trade-off surface very well as it spent most time 
exploring on a scattered region, the modified PAES 
focused exclusively near the Pareto fronts and 
succeeded in identifying the optimal solutions for the 
problems. However, as the modified PAES did not 
explore the entire trade-off surface, this raises a 
question if such focus of search exploration of the 
modified PAES is a real advantage. On-going 
research has been conducted to investigate further on 
the performance of the modified PAES on a wide 
variety of complex constrained problems in 
comparison with that of other known, efficient 
optimisation algorithms. 
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Fig.7. Close-up of the trade-off surface in two-objective projection for the test 
problem F4 in comparison with other multiobjective evolutionary algorithms 

(NSGA II and SPEA II, [9]) 

NSGA II SPEA II 
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