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Abstract: - Cournot non-cooperative game theory is one of the theoretical approaches more used to model 
market behavior in the electricity industry. However this approach is highly influenced by the residual demand 
curves of the market agents, which are usually not precisely known. Imperfect information has normally been 
modeled with Probability Theory, accepting to treat it as randomness. However, Possibility Theory might 
sometimes be more helpful than Probability Theory in modeling uncertainty, imprecision and vagueness. A 
Possibilistic Cournot equilibrium formulation is proposed, and two dual and complementary approaches are 
applied to simplify from fuzzy to deterministic, to compute a robust solution, when the residual demand 
uncertainty is modeled with a possibility distribution.  
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1 Introduction 
Most electricity oligopoly markets are being 
regulated on the base of competition among the 
companies or agents, to establish auto-regulated 
price fixing mechanisms. One important challenge is 
the proper modeling of the market behavior to 
forecast agent offer strategies. One of the mains 
modeling approach is the so-called market 
equilibrium theory [1], and in particular, Cournot 
equilibrium approach, possibly the theoretical 
scheme most commonly used [2], [3]. However, 
there are few published works where the Cournot 
approach takes into account the electricity market 
uncertainty (see [4] for different sources of 
uncertainty). Most of them do not take into account 
its potentially high sensibility with respect to the 
residual demand curves of each agent [5], and 
assume that a probabilistic estimation for these 
curves is always available [6][7][8]. For instance, [9] 
only considers that operating cost of rival producers 
are probability distributions. 

However (see 3.1) several drawbacks prevent 
from using the probabilistic approach, being 
sometimes more natural to choose a more flexible 
uncertainty model such as Possibility Theory, 
although less informative. Evidence Theory helps to 
fill the gap between possibility and probability, by 
providing a frequentist interpretation of possibility 
distribution [14]. It reduces to Possibility Theory, 
when focal elements are nested intervals, and to 
Probability Theory, when they are singleton [15]. 
Finally, it should be said that possibility 
distributions model not only uncertainty but also 

imprecision and vagueness [16], and can be well 
suited for linguistic information. That is why in this 
paper possibility distributions have been chosen to 
model the residual demand curves uncertainty.  

When modeling real electricity markets, it 
becomes convenient to obtain sensible energy agent 
productions when they face up unfavorable, but 
possible residual demand scenarios. These types of 
solutions, popularly called robust solutions, have been 
widely studied in operation research, leading to 
several similar interpretations of robustness [17][18]. 
In this paper new possibilistic Cournot equilibrium is 
proposed, and the approaches introduced in [20] for 
possibilistic objective optimization problems and 
applied in [21] to Cournot equilibrium are reviewed.  

Next section describes the bases of Cournot 
equilibrium. Section 3 compares probability and 
possibility for uncertainty modeling of the residual 
demand curves. Section 4 proves that Cournot 
equilibrium under possibilistic uncertainty can be 
formulated as a possibilistic optimization problem. 
Section 5 applies two approaches to compute a robust 
Cournot equilibrium. Finally conclusions are given. 
 
2 Classical Cournot Equilibrium 
Consider an electricity market in which E producers 
offer Pe quantities of energy (e=1,..,E) to a large 
number of consumers, whose demand D is a linear 
function of price market λ, with inelastic demand d 
and slope ρ, i.e., D(λ)=d-λ⋅ρ. Assume that productions 
Pe do not respond to changes in the market price 
(Pe(λ)=Pe), and that the generation costs of each 
producer are represented by functions Ce(Pe). Cournot 
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game theory provides a general approach to the 
problem of finding the agents behavior in the market, 
when producers make decisions independently and 
simultaneously and don’t cooperate with each others. 
The solution, in the sense of Nash [22], provides a 
production Pe

* for each producer e, that maximizes 
its individual profit when the productions of the 
others agents are supposed to be fixed: 
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Individual profit Be(Pe) is calculated by subtracting 
agents costs from incomes, and can be formulated in 
terms of Pe and λ, or in terms of Pe and D: 
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where µ is the inverse of the slope of the demand 
curve (µ=1/ρ) and the demand D is also interpreted 
as function of the productions {Pe} through the 
power balance equation: 
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Cournot equilibrium can be obtained by 
differentiating and zeroing Be(Pe), subject to the 
balance equation: 
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Or equivalently: 
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Clearly, in the equilibrium marginal costs (∂Ce/∂Pe) 
are equal to marginal incomes (λ-µ⋅Pe). 

3 Uncertain residual demand curves 
The residual demand curve (RDC) De(λ) of an agent 
e quantifies the amount of production De that the 
agent is able to sell at market price λ [23]. The RDC 
is calculated by subtracting the aggregated 
production of the rest of agents (denoted by PE-{e}) 
from the demand D, and is a function of the market 
price λ: 

( ) ( ) ( ) EePDD eEe ,..,1}{ =∀−= − λλλ  (6) 

It is common to express the market price λ as a 

function of the agent sales, λ(De), in which case the 
RDC of each agent e is the inverse of De(λ). In 
particular, when an oligopoly Cournot model is 
considered, then Pe(λ) is independent of the market 
price λ and therefore the same applies to PE-{e}(λ). If 
in addition the demand curve D is supposed to be 
linear, then De(λ) is also linear with negative slope ρ: 

( ) ( ) EePdD eEe ,..,1}{ =∀−⋅−= −ρλλ  (7) 

In this case the RDC (inverse function of Pe(λ)) is 
also linear but with negative slope µ (inverse of ρ) 
and equal for all the agents: 
( ) ( ) EePDdD eEee ,..,1}{ =∀−−⋅= −µλ  (8) 

Since Cournot models assume that rivals do not 
respond to price changes [24], the results may be 
extremely sensitive to the form of the RDC. That is 
why in this paper RDC slope has been considered 
uncertain (from now on denoted by µ~ ) in order to 
obtain a robust and crisp Cournot equilibrium, more 
insensitive to µ variability. 
 
3.1 Probabilistic RDC uncertainty modeling  
Although the probabilistic approach is the most used 
to represent uncertainty, several drawbacks suggest the 
convenience to use possibility distribution for 
uncertainty modeling. When fitting probability density 
functions (pdf), more than one type of pdf may satisfy 
the test conditions used to accept the fitting, reducing 
the validity of this approach. See [25] for a good 
example of how the high sensitivity of the results with 
respect to changes in the parameters of the accepted 
probability distributions suggests the use of possibility 
distribution instead. Moreover, sufficient historical 
information to fit a RDC slope pdf is often not 
available, due to, for example, market rule 
modifications (more frequent than expected, reducing 
the validity of historical data), data confidentiality 
(three months for bidding curves in Spain), etc. 
Additionally, computationally efficient probabilistic 
model requires simplifying hypotheses, which can be 
far from reality (such as normality of the pdf of the 
RDC slope µ~ ) reducing the rigor of the probabilistic 
approach. Finally, probability is not well suited for 
representing subjective linguistic inputs provided by 
the experts about the future behavior of the RDC. 

 
3.2 Possibilistic RDC uncertainty modeling 
LR possibility distributions have been chosen to 
model the RDC slope. Let π≡ µ~ =(µL, µR, αµL, αµR)LR 
be a LR possibility distribution [26]. Then:  

( )
⎪
⎩

⎪
⎨

⎧

≤−

≤≤

≤−

=

µµαµµµ

µµµ

µµαµµµ

µπ
RRR

RL

LLL

R

L

),/)((
,1

),/)((
 

(9) 

Proceedings of the 7th WSEAS International Conference on Fuzzy Systems, Cavtat, Croatia, June 12-14, 2006 (pp43-48)



 

where L: ℜ [0,1] and R: ℜ [0,1] are defined in 
ℜ=(-∞ ,+∞ ), continuous and differentiable, and 
strictly decreasing in (0,1) and such that L(s)=R(s)=1 
for s≤0 and L(s)=R(s)=0 for s≥1. The support 
{u/π(µ)>0} is assumed to be bounded. When 
L(s)=R(s)=1-s for s∈[0,1], trapezoidal possibility 
distributions are obtained. 

The main advantage of LR distributions is their 
closure under some operations performed via the 
extension principle. For example the addition and 
the multiplication by a scalar are LR distributions: 
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(10) 

This fact contributes to make algebraic operations 
with possibility distributions very efficient. Besides, 
possibilistic computation is much easier than 
probabilistic computation where integrals are 
typically involved. 
 
4 Uncertain Cournot equilibrium  
Let’s suppose that the RDC slope is modeled with a 
possibility distribution µ~ , so that the profit of each 
agent e is also given by the following possibility 
distribution (D is a function of the productions {Pe} 
through the power balance equation, denoted by 
D(Pe)): 
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If µ~  is a LR possibility distribution, using (10) each 
firm profit is also a LR possibility distribution: 
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where Ee ,..,1=∀  and },{ RLH ∈  it is: 
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Then, the Cournot equilibrium can be obtained by 
fuzzy differentiation and fuzzy zeroing: 
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Where =~ is a fuzzy equality, since strict equality 
with crisp Pe would lead to non-existing 
equilibriums. Differentiation of possibility-valued 
mappings ([27]) allows computing the derivative of 
the profit of each agent e as: 
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where Ee ,..,1=∀  and },{ RLH ∈  it is: 
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According to the extension principle, (15) can be 
condensed in a simpler function of µ~ , which 
substituted in (14) results in the possibilistic Cournot 
equilibrium equations proposed in this paper: 
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Generalizing similar results in [19] for the crisp case, 
solving these equations is equivalent to optimizing the 
following fuzzy programming model (the balance 
equation and the non-negative conditions of Pe are 
denoted by region F): 
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where inM~  is some kind of fuzzy minimization to be 
defined, and where: 
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The equivalence in the fuzzy case can be obtained as 
in [19], but in this case, optimizing (18) is equivalent 
to optimizing the following fuzzy Lagrange function: 
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By fuzzy differentiation and fuzzy zeroing, the fuzzy 
equation (17), the LR possibility distribution of market 
price λ~ , and the balance equation are again obtained: 
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outlining the main steps to prove the equivalence. 
Note that fuzzy equality must be the same in (14) and  
(21), which in turn determines the fuzzy minimization 
criterion of (18). Using (10) it is possible to compute 

Proceedings of the 7th WSEAS International Conference on Fuzzy Systems, Cavtat, Croatia, June 12-14, 2006 (pp43-48)



 

the LR distribution of the fuzzy cost of (18): 
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where for },{ RLH ∈  it is: 
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Since Dd ≥  and due to the power balance 
equation (3), it is: 
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Therefore, model (18) is equivalent to minimizing 
the following fuzzy cost, which measures the system 
efficiency in the fuzzy approach: 
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As in [19] additional constraints can be included into 
the model, such as the technical constraints of each 
agent generation groups. A more temporal detail can 
also be considered, such as a multi-period case for 
stationalities and different load levels. 

Summarizing, it has been proved that it is 
possible to generalize the deterministic crisp 
Cournot equations showed in (5) to the fuzzy case 
using fuzzy problem (25). Besides, since {Pe} are 
supposed crisp, a crisp optimization criterion must 
be defined to solve problem (25). 

This paper applies two different resolution 
approaches introduced in [21] to compute robust 
Cournot equilibriums, but other alternatives can be 
found in [28]. Most of them are based on different 
criteria for ranking fuzzy numbers [29] applied to 
fuzzy objectives, fuzzy constraints, or both.  

Given any solution of (25), the agent productions 
obtained can then be used to compute the possibility 
distribution of each agent profit or the possibility 
distribution of the market price: 
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Both distributions can be used to quantify the risk 
assumed by each agent and the volatility of the 
price, and will be computed in the case study for 
results comparison. 
 
5 Robust deterministic formulation 
A robust equilibrium can be interpreted as the 
equilibrium resulting from agents with risk aversion, 
looking for stable results when faced to unexpected 
but possible inputs; in this case due to the RDC 
slope variability. 

When the equilibrium is solved for a given RDC 
slope µ, but the real demand is more elastic (lesser 
slope µr), according to the equilibrium constraints (5), 
if the agents keep the same productions Pe (Fig. 1), 
then a higher market price is obtained (λ instead of 
λr), less generation is needed (Pe instead of the 
optimum Pe

r), and lesser global agent profits can be 
observed (although some individual profits could 
decrease with respect to the optimum) as well as a 
loss of the demand utility due to a larger amount of 
not satisfied demand (D instead of Dr). 
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Fig. 1: Equilibrium conditions with µr<µ 

Risk averse agents should protect themselves against 
this case, trying to reduce the risk of having non-
unexpected low profits.  

 
5.1 The primal approach 

If each agent looks for a set of productions that 
maximizes a pessimistic (minimum) profit 
Be,min(Pe,α0

max), such that the possibility of having 
profits lesser than Be,min(Pe,α0

max) is equal to a same 
value α0

max∈[0,1] for any agent, then it is: 
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Every agent is then ready to assume the same amount 
of possibilistic risk α0

max, which is coherent with 
classical game theory where players behave the same 
way. For each production Pe the pessimistic profit 
Be,min(Pe,α0

max) is given by the minimum profit 
Be(Pe,α0

max) with possibility α0
max (Fig. 2): 
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Fig. 2: Minimum profit with possibility α0max 

According to the extension principle, Be,min(Pe,α0
max) 

is then reached for µ=µL-L-1(α0
max)⋅αµL. This means 

that the possibilistic problem (27) leads to a simpler 
programming model with no integral calculus, and, 
since µ=µL-L-1(α0

max)⋅αµL, the original fuzzy model 
can be simplified into a crisp one that can be solved 
as in [19], where the maximum cost in (25) with 
possibility α0

max, denoted by Cmax(), is minimized 
according to the following problem: 
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5.2 The dual approach 

Instead of maximizing a pessimistic profit, a dual 
approach can be defined if agents look for a set of 
productions minimizing the possibility of having 
profits lesser than a minimum target B0

e,min, fixing 
the productions of the other agents (Fig. 3): 
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This is equivalent to maximize the necessity of 
having profits greater than B0

e,min, that is: 
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Each agent tries to necessarily reach a minimum 
profit, protecting against the risk of having 
unacceptable low profits, coherent with classical game 
theory where players are self-interested profit 
maximizers, taking decisions for good-defined 
objectives. For simplicity same possibility levels 
( )0

min,, ee BPα  can be assumed for all agents. The 
equivalence of this problem with the next non-linear 
one is straight forward: 
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Fig. 3: Possibility of a fixed profit B0

e,min 

In the optimum, a bad choice of profits B0
e,min could 

provide arguments for L() outside the interval (0,1) 
(smaller than zero if B0

e,min is large, and larger than 
one if B0

e,min is small). Since L() is not monotonous 
outside (0,1), this situation corresponds to a 
degenerated case not considered. In this case it is 
possible to replace L() by a new function La() 
monotonous on ℜ, with a non-piecewise formulation. 
When trapezoidal fuzzy numbers are considered it is 
useful to consider La(s)=1-s, for all s∈ℜ. However, 
without lack of generality it can be assumed that 
arguments for L() are restricted to the interval (0,1).  
It is easy to prove that equation (32) is equivalent to 
the following non-linear programming model: 
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where, if P0
e,min and µ0

min are the productions and the 
RDC slope that give profits B0

e,min, then C0
max is: 
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A combined approach can also be defined [21] as a 
compromise solution between primal and dual 
approaches, maximizing simultaneously the profit 
Be,min(Pe, α0

max) and the necessity β(Pe,B0
e,min)= 1-α(Pe, 

B0
e,min). 

 
6 Conclusions  
 The results presented in this paper, together with 
the real numerical application (to the Spanish 
hydrothermal electric power system, see [21]) have 
shown that Possibility Theory can effectively be used 
to model the uncertainty of the residual demand curve 
(RDC) for an electricity market, where each agent 
maximizes its benefit based on the Cournot 
equilibrium conjecture. It has been proved that 
Cournot equilibrium can be obtained by solving a 
fuzzy programming model, which generalizes the 
approach proposed in [19]. Since it is not possible to 
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find an optimal equilibrium for each possible RDC, 
criteria proposed in [20] and [21] can be used to 
obtain a robust Cournot equilibrium.  
 The authors are currently preparing a paper on a 
conjectural-variation equilibrium with uncertain 
(possibilistic) residual demand slopes, leading to a 
more general an powerful market modeling under 
uncertainty. 
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